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CHAPTER 1
Cloud Infrastructure Is Not Enough

Organizations build business-critical applications in the cloud and
at the edge for a reason, and many are starting to see the benefits
of building systems that blend the two, seeing them as not two
discrete “things” but as a continuum of capabilities (see “Tackling
the Inherent Constraints of the Edge” on page 9). The cloud and
the edge provide different and complementary capabilities, opportu-
nities, and benefits:

Cloud computing
Provides scalable, on-demand resources over the internet,
allowing organizations to reduce infrastructure costs, improve
flexibility, and enhance collaboration. By hosting applications
and data in centralized data centers, cloud computing enables
automatic updates, disaster recovery, and global accessibility.
Additionally, it offers powerful analytics and machine learn-
ing capabilities by aggregating large data volumes in a central-
ized location, which can be valuable for business insights and
automation.

Edge computing
Brings computation and data storage closer to the location where
they’re needed, reducing latency, improving response times
for time-sensitive applications, and improving resilience. This
approach is beneficial for mobile and Internet of Things (IoT)
devices and applications that require real-time processing, as it
minimizes the data transferred to centralized servers, reducing
bandwidth costs and network congestion. Edge computing also




enhances privacy and security by allowing local data processing,
which can be critical for industries like healthcare, manufactur-
ing, and autonomous driving.

Embracing cloud and edge computing can enable rapid time to
market and turnaround time, facilitating elasticity and high avail-
ability. Applications can leverage both private and public clouds,
and these hybrid cloud and/or edge applications combine in-house
data centers and ephemeral resources, allowing cost optimization,
ownership, and flexibility. In addition, public cloud and edge pro-
viders promote energy efficiency and geo-distribution to improve
user experience and disaster recovery.

Modern cloud and edge applications offer a radically different archi-
tecture than does a traditional single-machine monolith, requiring
new tools, practices, design, and architecture to navigate efficiently.
The distributed nature of this new class of applications brings its
own set of concerns. They must manage uncertainty and nondeter-
minism, distributed state and communication, failure detection and
recovery, data consistency and correctness, message loss, partition-
ing, reordering, and corruption. We will discuss these in detail in
this guide.

Infrastructure can hide some of the complexity inherent in a dis-
tributed system, but only partially. A system must cooperate between
the application and infrastructure layers to provide a complete and
coherent user experience, maintaining end-to-end guarantees.

Cloud and edge applications require a different approach to design-
ing, building, and reasoning about software systems—mainly dis-
tributed, highly concurrent, and data-intensive applications—that
maximizes our chances of success.

In a distributed system, we can’t maintain the idealistic, strongly con-
sistent, minimal latency,' closed-world models of the single-node sys-
tem. In many cases, calls that would otherwise be local and in-process
must now become remote, unreliable network calls. Portions of the
system on different hardware can fail at any time, introducing the
risk of partial failures; we are forced to relax the requirements (past
traditional expectations) to stay available and scalable.

1 See this GitHub Gist for a good reference on latency numbers in different contexts.
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The principles, patterns, and best practices outlined in this guide
aim to help us solve everyday problems in the most efficient way
possible before they manifest. They are based on understanding
and accepting the nature and challenges of distributed systems” and
embracing their inherent uncertainty and the constraints of the
hardware and the network. They can help us reap the benefits of dis-
tributed systems while nudging us toward better designs and away
from less beneficial ones such as shared mutable state, synchronous
communication, blocking I/O, and strongly coupled service archi-
tectures. Other benefits include services that require less code and
a shorter time to market, resulting in better maintainability and
extensibility over time. After we exploit these constraints and apply
these principles and patterns, the model and semantics put us in a
much better position to address its challenges.

What Is a Cloud Application?

Like all native species, a cloud application has adapted and evolved
to be maximally efficient in its environment: the cloud. The cloud
is a harsher environment for applications than environments of the
past, particularly the idealistic environment of a dedicated single-
node system. In the cloud, an application becomes distributed.
Thus, it must be resilient to hardware/network unpredictability and
unreliability, i.e., from varying performance to all-out failure.

The bad news is that ensuring responsiveness and reliability in this
harsh environment is difficult. The good news is that the applica-
tions we build after embracing this environment better match how
the real world actually works. This, in turn, provides better experi-
ences for our users, whether humans or software.

The constraints of the cloud environment, which make up the cloud
operating model, include:

o Applications are limited in their ability to scale vertically on
commodity hardware, which typically leads to many isolated,
autonomous services—often called microservices.

2 What is the essence of a distributed system? To try to overcome the facts that informa-
tion can't travel faster than the speed of light (which leads to consistency and coherency
problems) and independent things fail independently (dealing with partial failures,
failure detection, etc.).
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o All interservice communication takes place over unreliable
networks.’

o You must operate under the assumption that the underlying
hardware can fail, be restarted, or be moved at any time.

o The services need to be able to detect and manage failures of
their peers—including partial failures.

o Strong consistency and transactions are expensive. Because of
the coordination required, it is difficult to create services that
manage data that are available, performant, and scalable.

Therefore, a cloud application is designed to leverage the cloud
operating model. It is predictable, decoupled from the infrastruc-
ture, and right-sized for capacity, and it enables tight collaboration
between development and operations. It can be decomposed into
loosely coupled, independently operating services that are resilient
to failures, are driven by data, and operate intelligently across geo-
graphic regions.

Why Is Cloud Infrastructure Not Enough?

Cloud applications need both a scalable and available infrastructure
layer (e.g., Kubernetes and its ecosystem of tools) and a scalable
and available application layer. The infrastructure layer excels in
managing, orchestrating, scaling, and ensuring the availability of
“empty boxes” of software: the containers. But managing containers
only gets you halfway there. Of equal importance is what you put
inside the boxes and how you stitch them together into a single
coherent system.

Software engineer Kelsey Hightower elegantly described the problem:

Theres a ton of effort attempting to “modernize” applications at
the infrastructure layer, but without equal investment at the appli-
cation layer, think frameworks and application servers, were only
solving half the problem. Even with the best orchestration, logging,
security, and debugging infrastructure, code has to be written to
make the best use of it.

3 If you are inclined, read this great summary of network reliability postmortems. They
are scarier than the most terrifying Stephen King novel.
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Both the infrastructure and application layers are equally important
and need to work in concert to deliver a holistic and consistent user
experience. They manage resilience and scalability at distinct granu-
larity levels in the application stack. The application layer allows for
fine-grained, service-level management of resilience and scalability,
working closely with the application code, while the infrastructure
layer is more coarse-grained. The infrastructure layer acts as a
“cloud OS,” where the containers are similar to processes, each with
a certain level of isolation, resource management, and resiliency.
The “cloud OS” provides basic features such as persistence, 1/O,
communication, monitoring, and deployment. The application logic
lives within these containers, utilizing the services provided by the
“cloud OS” Still, it must be appropriately designed and put together
to deliver a complete end-user application.

Toward a Holistic View of System Design

I frequently hear one question: “Now that my application is contain-
erized, I assume I don't need to worry about all that hard distributed
systems stuff, since Kubernetes solves all my problems around cloud
resilience, scalability, stability, and safety. . .right?”

Unfortunately, no—it is not that simple.

In the now classic 1984 paper “End-To-End Arguments in System
Design”, Saltzer, Reed, and Clark discuss the problem that many
functions in the underlying infrastructure can be completely and
correctly implemented only with the help of the application at the
endpoints.

Here is an excerpt:

This paper presents a design principle that helps guide placement
of functions among the modules of a distributed computer system.
The principle, called the end-to-end argument, suggests that func-
tions placed at low levels of a system may be redundant or of little
value when compared with the cost of providing them at that low
level....

Therefore, providing that questioned function as a feature of the com-
munication system itself is not possible. (Sometimes an incomplete
version of the function provided by the communication system
may be useful as a performance enhancement)....

We call this line of reasoning against low-level function implemen-
tation the “end-to-end argument?” [emphasis added]
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This is not an argument against using low-level infrastructure tools
like Kubernetes—they add a ton of value—but rather is a call for
closer collaboration between the infrastructure and application lay-
ers to maintain holistic correctness and safety guarantees.

End-to-end correctness, consistency, and safety mean different
things for different services. It’s totally dependent on the use case
and can’t be entirely outsourced to the infrastructure. To quote Pat
Helland: “The management of uncertainty must be implemented in
the business logic” In other words, a holistically stable system is
the responsibility of the application, not of the infrastructure tooling
used (see “Accept Uncertainty” on page 17).

Some examples of this include:

Message delivery

What constitutes a successful message delivery? When the mes-
sage makes it across the network and arrives in the receive
buffer on the destination host network interface controller
(NIC)? When it is relayed through the network stack up to
the application’s networking library? When the application’s
processing callback is invoked? When the callback has comple-
ted successfully? When the ACK (acknowledgment of successful
receipt of the message) has been sent and gone through the
reversed path as the message and consumed by the sender?
The list goes on, and as you can see, it all depends on the
expected semantics and requirements defined by the use case:
application-level semantics.

Flow control
Fast producers should not be able to overload slow consumers.
Its all about maintaining end-to-end guarantees, which require
that all components in the workflow participate to ensure a
steady and stable flow of data across the system. This means
that business logic, application-level libraries, and infrastructure
all collaborate in maintaining end-to-end guarantees.

4 This quote is from Pat Helland’s highly influential paper “Life Beyond Distributed
Transactions”, which is essential reading.
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We need to raise the abstraction level, develop programming mod-
els, and create runtimes that can do the heavy lifting. This will allow
us to focus on building business value instead of tinkering with the
intricacies of network programming and failure modes.

A single service is not that useful—services come in systems and are
only useful when they can collaborate as systems. As soon as they
start collaborating, we need ways to coordinate across a distributed
system, across an inherently unreliable network.

The hard part is not designing and implementing the services but
managing the space between them. Here, all the hard things enter the
picture: data consistency guarantees, reliable communication, data
replication and failover, component failure detection and recovery,
sharding, routing, consensus algorithms, and much more. Stitching
all that together yourself is very hard.

The Unfortunate Trend of Stateless Protocols

Most developers building applications on top of Kubernetes rely
mainly on stateless protocols and design. They embrace containers
but too often hold on to old architecture, design, habits, patterns,
practices, and tools—made for a world of monolithic single-node
systems running on top of the almighty SQL database.

The problem is that focusing exclusively on a stateless design
ignores the most challenging part of distributed systems: managing
the state of your data.

It might sound like a good idea to ignore the most challenging part
and push its responsibility out of the application layer—and some-
times it is. But as applications today are becoming increasingly data-
centric and data driven, taking ownership of your data by having
an efficient, performant, and reliable way of managing, processing,
transforming, and enriching data close to the application itself is
becoming more critical than ever.
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Many applications can’t afford the round trip to the database for
each data access or storage but must continuously process data
in close to real time, mining knowledge from never-ending data
streams. This data also often needs to be processed in a distributed
way—for elasticity, scalability, and throughput—Dbefore it is ready to
be stored by the persistence layer.

Putting a cache in front of the database can help mitigate some
of the increased latency but comes with its own bag of problems
around cache coherency, data consistency, cache invalidation, resil-
ience, and operational complexity. For example, in an online store’s
flash sale, each service caches item stock levels to avoid database
overload. However, maintaining cache coherence across services
is difficult; one service’s updated stock may not immediately sync
with that of other services, risking overselling. Cache invalidation,
where stale data must be updated everywhere, can fail if messages
are delayed or lost. Additionally, if a cache node fails, fallback
mechanisms must handle the increased load on other resources.
Managing these caching strategies—synchronization, failover, and
consistency models—adds significant operational burden, as even
minor misconfigurations can lead to inconsistent data or degraded
performance.

This requires a different way of looking at the problem—a different
design, one that puts data at the center, not on the sidelines.

Finding Success with Data-Driven
Stateful Services

Data is the new gold, becoming more and more valuable every
year. Companies are trying to capture “everything”—aggregating
and storing away ever-increasing volumes of data in huge data
lakes with the hope of gaining unique insights that will lead to a
competitive advantage in the race to attract more customers. (That
being said, the urge to capture everything often needs to be balanced
against legal mandates and users’ rights, like those in the General
Data Protection Regulation [GDPR], the user’s right to be forgotten,
etc.) But running nightly jobs using traditional batch processing on
all this data often turns out to be too slow.
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Nowadays, we need to be able to extract knowledge from data as
it flies by, in close to real time, processing never-ending streams of
data from thousands of users at faster and faster speeds.

To do this efficiently, we must take back ownership of our data
and model our systems with data at the center. We must move
from high-latency, stateless, behavior-driven services to low-latency,
stateful, data-driven services.

Tackling the Inherent Constraints of the Edge

To address some of the challenges around ensuring low latency,
resilience, performance, and data compliance, many organizations
are turning to edge computing. The edge is on the rise and remains a
growing and exciting new architecture for enterprises across multi-
ple industries. But unlike traditional cloud applications, edge appli-
cations must contend with several constraints:

Limited resources
They are confined to the hosting device, with additional pro-
cessing and storage available only from locally reachable peers.

Lack of global consistency
The inability to maintain a consistent global view across
devices, with consensus among larger groups, is prohibitively
expensive.

Lack of stable networks
Network links, such as multi-hop mesh networks, are unreliable
and potentially slow.

Mobile nature of devices
Devices can move between locations, making them unreachable
from previously joined networks.

Ephemeral nature of devices
Devices can fail, restart, or be temporarily suspended at any
time.

Ephemeral nature of connections
Due to the devices’ mobile and autonomous nature, all commu-
nication partners must be treated as temporarily connected.
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Radically different environment
The infrastructure, environment, tools, and products are radi-
cally different compared to what happens in the cloud and what
most people are used to.

To address these constraints, edge applications require program-
ming models and runtimes that embrace decentralization, location-
transparent and mobile services, physical co-location of data and
processing, temporal and spatial decoupling of services, and auto-
matic peer-to-peer data replication (all things we will discuss
in depth later in this guide). The core principle is to enable
autonomous operation without dependence on a central infrastruc-
ture or persistent connectivity.

We should not see cloud and edge as separate things—as an
either-or or black-white choice—but as a continuum of many layers
stretching from centralized cloud, to near edge, to far edge, out to
the devices (as you can see in Figure 1-1).

( )

Devices o 0O O O O O O O
(field deployed) OJ DEI gl gOo O 0o O O O O

wimases 00 0 T T0'TH'TO
g ( ) () (o) | Gt (o) (Gt

Cloud [
(global)

Backend cloud ]

J/

Figure 1-1. Different layers of the cloud-to-edge continuum

In an ideal world, one should not have to think about cloud and
edge differently—or design, architect, and develop for each sepa-
rately. Developers already have to deal with too much complexity
that stands in the way of getting things done, finding their way
through a jungle of products, libraries, tools, and techniques. And,
once they've selected these, they are still left with the puzzle of
composing them into a single functioning system.

Where you need your services to run in this continuum is very
much use-case dependent and might change over the lifetime of an
application, depending on usage patterns or changes in features and
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business requirements. Critical parameters like latency, throughput,
consistency, availability, scalability, compute resources, etc. change
drastically as you move through this continuum. This results in both
new opportunities and challenges, as shown in Table 1-1.

Table 1-1. Challenges and opportunities across the cloud-to-edge
continuum

Further out, toward the device Further in, toward the cloud

10,0005 to 100,000s of points-of-presences 10s to 1,000s of nodes to coordinate
(PoPs) to coordinate (millions of “things” if we

count the devices)

Unreliable networks and hardware Reasonably reliable network and hardware
Limited resources and compute power Vast resources and compute power

Ability to make local, faster, but less accurate Ability to make global, slower, but more
decisions knowledgeable decisions

Low-latency real-time streaming through Batch-oriented with high latency to backend
in-process processing services (from the edge users’ perspective)

Calls for weaker consistency guarantees Allows for stronger consistency guarantees (ACID
(eventual or causal consistency) and linearizability)

More resilient and available (data, compute, Less resilient and available (dependent on a fast,
and user co-located, so all that is needed to reliable connection to the backend cloud to send
serve the user is already there) or fetch data and perform computations)
Requires fine-grained data replication and Coarse-grained, batch-oriented data replication is
mobility (that is adaptive and selective) possible; data can be stationary

Users are creating ever greater volumes of data every year. In order
to serve our users as efficiently as possible, we are forced to manage
and process the data where it is created by the end user, at the
far edge and/or at the devices themselves. Being able to do this
successfully will radically reduce the latency in serving our users and
ensure better availability—everything needed to serve the end user
will be localized to the same physical location as the user—and open
up a lot more flexibility in how data is managed on behalf of our
users, e.g., guarantees on regional data compliance.

In an ideal world, where something will run—on prem, cloud, edge,
or device—should not dictate how it is designed, implemented, or
deployed. The optimal location for a service at any specific moment
might change and is highly dependent on how the application is
being used and the location of its users. Instead, we need to employ
principles that evolve around data and service mobility, location
transparency, self-organization, self-healing, and the promise of
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physical co-location of data, processing, and end user—meaning
that the correct data is always where it needs to be, for the required
duration and nothing shorter or longer, even as the user moves
physically in space. This calls for climbing the ladder of abstraction
and high-level programming models for building and operating
cloud-to-edge applications.

Climbing the Ladder of Abstraction

Today’s cloud infrastructure is fantastic. The richness and power of
our cloud-native ecosystem around Kubernetes are easy to forget.
It’s hard to remember the world before containers and Kubernetes
and how hard it was to deploy and operate distributed applications.
We have come a long way from the beginnings of cloud, multinode,
and multicore development.

But this richness has come with a price. We are drowning in com-
plexity, faced with too many products, decisions, and worries. What
products to pick? How to use them individually? How to compose
them into a single cohesive system? How to guarantee overall system
correctness across product boundaries? How to provide observabil-
ity of the system as a whole? How to evolve the system over time?

At the same time, users, competition, and new opportunities create
new business requirements and a need to move and innovate faster
while gracefully managing ever-increasing volumes of users and
data—all at a faster pace. And we can't just move fast and break
things; we have to make changes with predictability, repeatability,
and reusability.

Can we do better? Most definitely. Mathematician and philosopher
Alfred North Whitehead famously said, “Civilization advances by
extending the number of important operations which we can per-
form without thinking about them

This wisdom very much applies to our industry. We need to climb
the ladder of abstraction. Reach a bit higher. But this requires that
we, as developers, learn to let go of control and understand that we
don’t need every knob and that delegating means freeing oneself up

5 Alfred North Whitehead, An Introduction to Mathematics (New York: Henry Holt,
1911), p. 61.
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to focus on more important things, such as building core business
value.

As theologian Timothy Keller has said, “Freedom is not so much
the absence of restrictions as finding the right ones, the liberating
restrictions.”® We need to learn to embrace the constraints. But what
are these liberating constraints, the liberating abstractions?

There are three things we, as developers, can never delegate to a
product or platform:

Business logic
What logic will drive the business value? How should we act
and operate on the data, store, query, transform, downsample,
relay, mine intelligence, and trigger side effects?

Domain data model
How do we model the business data and domain model?
This includes its structure, constraints, guarantees, storage, and
query model.

API definition
How do we want the service to present itself to the outside
world? How should it communicate and coordinate with other
services? What data does it expose, and under what guarantees?

We need to raise the abstraction level and liberate developers, set
them free to focus on the essence: writing business logic, modeling
domain data, and defining the API. This calls for the unification of
cloud and edge, creating unified programming models powered by
runtimes and data meshes that abstract and manage the underlying
details, complexity, and vast differences in infrastructure require-
ments and the guarantees it can provide.

Think Reactive

In 2014, some friends and I (Dave Farley, Roland Kuhn, and Martin
Thompson) wrote “The Reactive Manifesto”. The goal of the mani-
festo was to create a conceptual framework for how to think, archi-
tect, and design applications for the (at the time, and to some extent
still) new world of multicore, cloud, and edge systems. At the same

6 Timothy Keller, The Reason for God: Belief in an Age of Skepticism (New York: Penguin,
2008), p. 46.
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time, we hoped to spark interest around solid computer science
principles and patterns and create a vocabulary useful for talking
about these systems. In retrospect, the initiative was immensely
successful, as reactive systems and applications have penetrated the
industry at large, inspiring tens of thousands of companies to build
cloud systems in a more elastic, resilient, and responsive manner.

The tenets of the Reactive Manifesto (see Figure 1-2) are best under-
stood in terms of:

o Value: Responsive, maintainable, and extensible

o Form: Elastic and resilient

o Means: Message-driven (or event-driven)

|Maintainable| | Extensible |
Ve > _feone Je—

i e
Form [ Elastic %——b@lient I
A A

Figure 1-2. The tenets of the Reactive Manifesto

The design philosophy, mental model, and framing that the Reactive
Manifesto embodies provides a high-level framing of the principles
and patterns discussed in this guide, helping us manage this com-
plexity and ensure that we can build applications that thrive in the
cloud and at the edge.

Let’s now take a look at the principles of distributed application
architecture. These foundational principles can help us navigate the
new world of cloud and edge systems more easily, liberating us to
move fast with predictability, leveraging the power of cloud and
edge infrastructure, while avoiding needless complexity.
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CHAPTER 2

Principles of Distributed
Application Architecture

The new opportunities that the cloud and edge open up give us a lot
to be excited about. But the problem is, as Sidney Dekker writes in

his excellent book Drift into Failure, that modeling the world is very
hard:

We can model and understand in isolation. But, when released
into competitive nominally regulated societies, [our technologies’]
connections proliferate, their interactions and interdependencies
multiply, their complexities mushroom. And we are caught short.

We need a solid foundation—principles and patterns—for how to
reason about distributed systems.

The principles and patterns discussed in this guide are most defi-
nitely not new; many can be traced back to the ’70s, ’80s, and *90s
and the seminal work by Jim Gray and Pat Helland on the Tandem
system; by Joe Armstrong and Robert Virding on Erlang; and by
legendary computer science researchers such as Leslie Lamport,
Barbara Liskov, Nancy Lynch, Ken Birman, Michael J. Fischer, John
Ousterhout, Carl Hewitt, Marc Shapiro, and many more. However,
these pioneers were ahead of their time, and only in the past decade
has the technology industry been forced to rethink current best
practices for enterprise system development and learned to apply
the hard-won knowledge of these principles to today’s world of
multicore, cloud, and edge.
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Lets now discuss eight fundamental principles for building dis-
tributed applications that are not only highly complementary with
the cloud-native philosophy and the Kubernetes ecosystem of tools
but also essential for making the most out of them.

Stay Responsive

Always try to respond in a timely manner.

Responsiveness matters. A lot. It is the face of your business and its
quality of service, the last link in the chain, a bridge to your users,
and the cornerstone of usability and utility.

It’s easy to stay responsive during “blue sky” scenarios when every-
thing is going as planned. It is equally important, but a lot harder,
to stay responsive in the face of unexpected failures, communication
outages, and unpredictable workloads. Ultimately, to your users, it
does not matter that the system is correct if it cannot provide its
functionality within their time constraints.

Being responsive is not just about low latency and fast response time
but also about managing changes—in data, usage patterns, context,
and environment. Such changes should be represented within the
application and its data model, right up to its end-user interactions;
reactions to change will be communicated to the users of a compo-
nent, be they humans or programs, so that responses to requests can
be interpreted in the right context.

Responsive applications effectively detect and deal with failures (see
“Embrace Failure” on page 22), focusing on providing rapid and
consistent response times. In the worst case, they respond with an
error message or provide a degraded but still useful level of service
(see “Guard Connections” on page 62). This establishes mutually
understood upper bounds on response latency and thereby creates
the basis for delivering a consistent quality of service. Such con-
sistent behavior in turn simplifies error handling, builds end-user
confidence, and encourages further interaction.

Responsiveness can be elusive since it is affected by so many
aspects of the system. It is nowhere and everywhere, influenced by
contention, coordination, coupling, dataflow, communication pat-
terns, resource management, failure handling, and uncertainty (see
“Accept Uncertainty” on page 17). It is the foundational concept
that ties into, and motivates, all of the other principles.
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Accept Uncertainty

Build reliability despite unreliable foundations.

As soon as we cross the boundary of the local machine, or of the
container, we enter a vast and endless ocean of nondeterminism:
the world of distributed systems. It is a scary world' in which
systems can fail in the most spectacular and intricate ways, where
information becomes lost, reordered, and corrupted, and where
failure detection is a guessing game. It's a world of uncertainty.

Most importantly, there is no (globally consistent) “now.” The
present is relative and subjective, framed by the viewpoint of the
observer. The fundamental problem of this world, due to the lack
of consistent and reliable shared memory, is the inability to know
what is happening on another node now. We must acknowledge
that we cannot wait indefinitely for the information we need for a
decision. As a consequence, our algorithms will lack information
due to faulty hardware, unreliable networks, or the plain physical
problem of communication latency.’ Data is out of date by the time
you acknowledge it, and you are forced to deal with a fragmented
and unevenly outdated state of things.

There are well-established distributed algorithms (e.g., consensus
protocols like Paxos and Raft [see “Seek Consensus” on page 91]
or two-phase commit [2PC]) to tame this uncertainty and produce
a strongly consistent view of the world. However, those algorithms
tend to exhibit poor performance and scalability characteristics and
imply unavailability during network partitions. As a result, we have
had to give up most distributed systems as a necessary tradeoff to
achieve responsiveness, moving us to agree to a significantly lesser
degree of consistency, such as causal, eventual (discussed in more
detail in “Tailor Consistency” on page 27), and others, and accept
the higher level of uncertainty that comes with them.

1 If you have not experienced this firsthand, I suggest that you spend some time thinking
through the implications of L. Peter Deutsch’s “fallacies of distributed computing”.

2 Justin Sheehy’s “There Is No Now” is a great read on the topic.

3 That fact that information has latency and that the speed of light represents a hard (and
sometimes very frustrating) nonnegotiable limit on its maximum velocity is an obvious
fact for anyone who is building internet systems or who has been on a VOIP call across
the Atlantic.
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This has a lot of implications: we can’t always trust time as meas-
ured by clocks and timestamps or order (causality might not even
exist). The key is to manage uncertainty directly in the application
architecture.

We need to design resilient, autonomous components that publish
their protocols to the world—protocols that clearly define what they
can promise, what commands and events the component accepts,
and, as a result of that, what component behavior it will trigger and
how the data model should be used. The timeliness and assessed
accuracy of underlying information should be visible to other compo-
nents where appropriate so that they—or the end user—can judge the
reliability of the current system state.

The Benefits of Using Logical Time
in Distributed Systems
Relying on so-called “wall clock time” distributed systems can be
challenging, as it is often indeterministic and leads to higher uncer-

tainty. We need to base our reasoning and algorithms on more solid
ground. Logical time can provide this foundation.

In his 1978 classic paper “Time, Clocks, and the Ordering of Events
in a Distributed System”, Leslie Lamport came up with the idea of
Lamport clocks, which work as follows:

1. When a process does work, increment the counter.
2. When a process sends a message, include the counter.

3. When a message is received, merge the counter (set the counter
tomax(local, received) + 1).

Building on Lamport clocks, Colin Fidge came up with vector clocks
(discussed in his 1988 paper “Timestamps in Message-Passing Sys-
tems That Preserve the Partial Ordering”) which work as follows:

1. Each node owns and increments its own Lamport clock (built
using a hashmap with [node -> lamport clock] entries).

2. Always keep the full history of all increments.

3. Merge the increments by calculating the max (the so-called
monotonic merge).
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Vector clocks have become a cornerstone of most distributed systems
algorithms that deal with time and ordering. One problem with
vector clocks (and conflict-free replicated data types [CRDTs], dis-
cussed below) is that the history can grow unbounded. Being able
to prune history can sometimes be beneficial and can be addressed
with so-called dotted version vectors, discussed in the paper “Dotted
Version Vectors: Logical Clocks for Optimistic Replication” by Nuno
Preguica and colleagues.

Let’s take a step back and think about how we deal with partial and
inconsistent information in real life. For example, suppose that we
are chatting with a friend in a noisy bar. If we can’t catch everything
that our friend is saying, what do we do? We usually (hopefully)
have a little bit of patience and allow ourselves to wait a while,
hoping to get more information that can fill in the missing pieces.
If that does not happen within our window of patience, we ask for
clarification and receive the same or additional information.

We do not aim for guaranteed delivery of information or assume
that we can always have a complete and fully consistent set of facts.
Instead, we naturally use a protocol of at-least-once message deliv-
ery and idempotent messages. At a very young age, we also learn
how to take educated guesses based on partial information. We learn
to react to missing information by trying to fill in the blanks. And if
we are wrong, we take compensating actions.

At-least-once message delivery ensures that a message is

m delivered to the recipient one or more times, but never
less than once. This means that the system retries
sending a message until it gets an acknowledgment of
receipt. This leads potentially to duplicate deliveries if
the acknowledgment is lost or delayed, so while this
guarantees delivery, it requires handling duplicates to
avoid unintended side effects.

Idempotent messages are messages that can be pro-
cessed multiple times without changing the outcome
beyond the initial execution. In other words, even if
a message is delivered and processed more than once,
the system behaves as if it had been processed only
once. Idempotence is crucial for safely handling dupli-
cates in “at least once” delivery systems, ensuring con-
sistent results despite possible retransmissions.
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We need to learn to apply the same principles in system design and
rely on a protocol of guess; apologize; compensate, which is how the
world works around us all the time.

One example is ATMs. They allow withdrawal of money even dur-
ing a network outage, “taking a bet” that you have sufficient funds
in your account. And if the bet proves wrong, the bank will take
a compensating action and show a negative balance in the account
(and, in the worst case, the bank will employ collection agencies to
recover the debt).

Another example is airlines. They deliberately overbook planes,
“taking a bet” that not all passengers will show up. And if they are
wrong and everyone shows up, they then try to bribe themselves
out of the problem by issuing vouchers—another example of com-
pensating actions.

We need to learn to exploit reality to our advantage. That is, accept-
ing this uncertainty, we have to use strategies to cope with it. For
example, we can rely on logical clocks® (such as vector clocks,’
see sidebar). When appropriate, we can use eventual consistency
(e.g., leveraging event-first design, see Chapter 4), certain NoSQL
databases, and CRDTs and make sure our communication protocols
are:

Associative
Batch insensitive, grouping does not matter > a + (b + ¢) =
(a+b)+c

Commutative
Order insensitive, order does not matter >a+b=>b+a

Idempotent
Duplication insensitive, duplication does not matter > a+a =a

4 Essential reading on the topic of logical time in computer systems is Leslie Lamport’s
paper “Time, Clocks, and the Ordering of Events in a Distributed System”.

5 A highly influential paper on the use of vector clocks in distributed systems is Colin J.
Fidge’s 1988 paper “Timestamps in Message-Passing Systems That Preserve the Partial
Ordering”.
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CRDTs are one of the most interesting ideas from distributed sys-
tems research in recent years. They give us rich and composable
data structures—such as counters, registers, maps, and sets—that
are guaranteed to converge consistently in an eventually consistent
fashion without the need for explicit coordination.

There are two types of CRDTs:

Convergent/state-based (CvRDT)

CvRDTs are self-contained and keep the history of all state
changes in the data type itself—like a vector clock. Clients can
add, update, or delete data, and the data type is guaranteed
to converge as long as all changes eventually reach all replicas
(which is usually done through gossiping—see “Gossip for Con-
vergence” on page 85). When reading data, you can define the
level of consistency guarantee that is needed:

« Read from the data you have (potentially inconsistent).
o Read from a quorum of the replicas (usually good enough).

o+ Read from all replicas (strongest guarantee).

Commutative/operations-based (CmmRDT)
CmRDTs instead replicate the state-changing operations to the
other replicas. The order in which the state-changing operations
have been executed in a specific replica is maintained when
replicated to other replicas. This requires a reliable broadcast
channel, with exactly-once delivery—a technique that looks a
lot like event sourcing (see “Log Events” on page 51).

CRDTs don't fit all use cases, but they are a very valuable tool when
building scalable and available distributed systems. For more infor-
mation, see Marc Shapiro and colleagues’ paper “A Comprehensive
Study of Convergent and Commutative Replicated Data Types”. For
a production-grade library for CRDTs, see Akka Distributed Data.
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Embrace Failure

Expect things to go wrong and design for resilience.

Failure is inevitable and will happen whether you like it or not.
Don’t work hard to try to prevent failure. Instead, embrace it as a
natural state in the application’s life cycle, not an exceptional anom-
aly. Make it first-class, as a part of the regular component finite
state-machine (FSM) and workflow of events.

Failures need to be contained and compartmentalized to minimize
the damage and avoid the spread of cascading failures.

Bulkheading is most well-known as an approach used in ship con-
struction to divide a ship into isolated, watertight compartments
(see Figure 2-1). If a leak fills a few compartments, the problem is
contained, and the ship can continue to function.
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Figure 2-1. Bulkheads help ships avoid cascading failures through
compartmentalization

The same technique can be applied successfully to software. It can
help us arrive at a design that prevents failures from propagating
outside the failed component, thereby avoiding cascading failures
that can take down an entire system.
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counterexample. It is actually an interesting study® in
what happens when you don’t have proper isolation
between compartments and how that can lead to cas-
cading failures, eventually taking down the entire sys-
tem. The Titanic did use bulkheads, but the walls that
were supposed to isolate the compartments did not
reach all the way up to the ceiling. So, when 6 of its
16 compartments were ripped open by the iceberg and
the ship began to tilt, water spilled over the bulkheads
from one compartment to the next, eventually filling all
the compartments and sinking the ship, killing 1,500
people.

m Some people might come to think of the Titanic as a

The boundary, or bulkhead, between components that asynchronous
messaging (for more details, see “Decouple in Time” on page 32,
“Decouple in Space” on page 33, and “Go Async” on page 44) enables
and facilitates is the foundation for resilient and self-healing systems.
It enables the loose coupling—decoupling in space and time—needed
to fully isolate systems from each other.

Failures are best represented explicitly as values (see “Communicate
Facts” on page 38) that can be wrapped in events and communicated
to other threads or processes or over the network. Treat them no
differently than any other event; they can be stored, monitored,
replayed, and subscribed to. This model is location transparent (see
“Leverage Location Transparency” on page 49).

An explicitly represented failure condition also allows a component
to purposefully provide degraded service instead of failing silently
and completely (see “Guard Connections” on page 62). Where pos-
sible, we can use this to implement self-healing capabilities using
supervisor hierarchies (see “Supervise Subordinates” on page 68) and
the “let it crash” (or “fail fast”) approach of killing and restarting the
failed component—a strategy used successfully in implementations
of the actor model (see “Model with Actors” on page 66), e.g., Erlang
and Akka.

6 For an in-depth analysis of what made the RMS Titanic sink, see the article “Causes and
Effects of the Rapid Sinking of the Titanic”.
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A single “thing”—component, service, node, region—is by defini-
tion not available, since if that “thing” fails, then you have 100%
unavailability. In practice, availability requires redundancy, meaning
at least one replica (in practice usually many more). Distributed
systems are indeed systems of many “things”—be it services, nodes,
data centers, or regions—that all need to work in concert as a truly
collaborative system (see “Replicate for Resilience” on page 79 and
“Gossip for Convergence” on page 85).

One of the hardest things with distributed systems is to deal with
partial failures, the fact that independent things fail independently.
If a request sent from one node to another is being timed out, does
that mean that it succeeded on the other node but the acknowledg-
ment got dropped, or does it mean that the request never made
it to the other node in the first place? Or does it mean that the
other node is available but just slow in processing requests (due to
garbage collection pauses, or its request queue being piled up)? Or
is it actually down? The network is inherently unreliable, and there
is no such thing as a perfect failure detector (see “Detect Failure” on
page 75).

The best way to manage this uncertainty is to make the network
first-class in our design and programming model and rely on solid
practices for tackling distributed systems head-on, such as asyn-
chronous communication (see “Go Async” on page 44), retries with
exponential backoff, circuit breakers (see “Guard Connections” on
page 62), and others.

The challenge is that complex systems (see the note) usually fail in
their composition, in the space in between or at the intersection of
their parts. As Richard Cook says, “Complex systems run as broken
systems,” and as Sidney Dekker says in Drift into Failure, “Accidents
come from relationships, not broken parts”

Therefore, it is paramount to provide graceful degradation, along-
side bulkheading, by carefully guarding connections (e.g., circuit
breakers, see “Guard Connections” on page 62) and by providing
flow control (e.g., backpressure, see “Coordinate Dataflow” on page
41) between internal applications components, to the users of the
application, and to external systems.

7 Richard CooK’s profound and eye-opening talk “How Complex Systems Fail” is a
must-watch.
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Complicated systems versus complex systems:
o A complicated system comprises many small parts,
all different and each having a precise role in the

machinery. It’s usually possible (but hard) to fully
understand.

o A complex system is made of many similar, inter-
acting parts that obey simple, individual rules,
giving rise to emergent properties. It’s their inter-
actions that produce a globally coherent behavior.
A complex system is impossible to fully under-
stand; you can understand it only by trying to
understand the underlying rules.

A nontrivial distributed system is a complex system,
and reasoning about complex systems is very hard.
And as Donella Meadows says in her article “Leverage
Points: Places to Intervene in a System”: “Counterintui-
tive. That’s [Jay] Forrester’s word to describe complex
systems. Leverage points are not intuitive. Or if they
are, we intuitively use them backward, systematically

worsening whatever problems we are trying to solve”

Assert Autonomy

Design components that act independently and interact collaboratively.

Autonomy is a prerequisite to certainty, elasticity, and resilience. As
Mark Burgess says in his fascinating book In Search of Certainty,
“Autonomy makes information local, leading to greater certainty
and stability”

The components of a larger system can stay responsive only relative
to the degree of autonomy they have from the rest of the system.
Autonomy is achieved by clearly defining the component bound-
aries—that is, who owns what data and how the owners make it
available—and by designing them such that each party is afforded
the necessary degree of freedom to make its own decisions.
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When a service calls upon another component, that component
must have the ability to send back momentary degradations, for
example, those caused by overload or faulty dependencies. And it
must have the freedom to not respond when that is appropriate,
most notably when shedding heavy load.

Relying on asynchronous (see “Go Async” on page 44) and
event-based protocols between components can help since they
reduce temporal and spatial coupling between the components (see
“Decouple in Space” on page 33 and “Decouple in Time” on page
32). Creating an asynchronous boundary between the components
makes them easier to “bulkhead” (see “Embrace Failure” on page
22), preventing cascading failures (which would violate component
autonomy).

Another aspect of autonomy is that the boundary between the two
components is crossed only via the documented protocols; there
cannot be other side channels. Only with this discipline is it possible
to reason about the collaboration and potentially verify it formally.
Many times, the protocol will be trivial, like the request-response
message pairs, but in other cases, it may involve backpressure or
even complex consensus protocols between multiple parties. The
important part is that the protocol is fully specified, respecting the
autonomy of the participants within the communication design.

An autonomous component can only promise its own behavior
through its protocol. Embracing this simple yet fundamental fact
has a profound impact on how we can understand collaborative
systems. If a service only promises its own behavior, then all infor-
mation needed to resolve a data conflict or repair data under failure
scenarios is available within the service itself, removing the need for
unnecessary communication and coordination.

Valuable patterns that foster autonomy include actors (see “Model
with Actors” on page 66), domain-driven design (see “Events-First
Domain-Driven Design” on page 108), event sourcing (see “Log
Events” on page 51), and CQRS (see “Untangle Reads and Writes”
on page 54). Communicating fully self-contained facts (immutable
values, see “Communicate Facts” on page 38), modeled closely after
the underlying business domain, gives the recipient the power to
make their own decisions without having to ask again for more
information.
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Tailor Consistency

Individualize consistency per component to balance availability and
performance.

Consistency is about guaranteeing the integrity of your application
and the user’s data. Providing more consistency guarantees than you
actually need will not add value; instead it will only decrease the
availability, elasticity, efficiency, and performance of your applica-
tion. Being correct doesn’t matter if you can’t serve your customers
reliably.

Strong consistency® (by which we mean strict serializability — infor-
mally it means that external observers see behavior as if they were
interacting with a single, local system) is intuitive and easy to rea-
son about, but it requires synchronous communication and coor-
dination and—ultimately—requires the availability of all relevant
participants. These are requirements that can halt progress under
failure conditions, rendering the system nonresponsive, and slow
down progress even in a healthy environment. As Pat Helland says,
“Two-phase commit is the anti-availability protocol”

When it comes to distributed systems, one constraint is that com-
munication has latency. Its a fact (quantum entanglement, worm-
holes, and other exotic phenomena aside) that information cannot
travel faster than the speed of light. Most often, it travels consider-
ably slower, which means that communication of information has
latency.

In this case, exploiting reality means coming to terms with the
fact that information is always from the past and always represents
another present—another view of the world (you are, for example,
always seeing the sun as it was 8 minutes 20 seconds ago). “Now” is
in the eye of the beholder, and in a way, we are always looking into
the past.

8 Peter Bailis has a good explanation of the different flavors of strong consistency.
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It's important to remember that reality is not strongly consistent but
eventually consistent. Everything is relative, and there is no single
“now” Still, we try so hard to maintain the illusion of a single glob-
ally consistent present, a single global “now.” This is no surprise. We
humans are bad at thinking concurrently, and assuming full control
over time, state, and causality makes it easier to understand complex
behavior.

The cost of maintaining the illusion of a single global “now” is very
high and can be defined in terms of:

Serial dependencies
The parts of your code that are nonparallelizable

Contention
Resource conflict, which results in waiting for shared resources
to become available

Coherency
Coordination requirements, which results in a delay for data to
become consistent

Gene Amdahl’s now-classic Amdahl’s law explains the effect that
serial dependencies have on a parallel system and shows that they
put a ceiling on scalability, yielding diminishing returns as more
resources are added to the system. This law shows that the potential
speedup from parallelism is limited by the fraction of a system that
must remain serial (nonparallelizable). For example, if 80% of a soft-
ware process can be parallelized but 20% must stay serial, then no
matter how many processors are added, the maximum speedup is
capped at 5x. This happens because that serial part becomes a bottle-
neck, limiting overall gains in performance. For software systems, this
means that simply adding resources won’t continue to yield benefits
if parts of the code or architecture aren’t parallelizable. See Figure 2-2
for an illustration of different levels of parallelization.
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Figure 2-2. Amdahl’s law describes the effect that nonparallelizable
code has on speedup given the number of processors

However, it turns out that this is not the full picture. As you can see
in Figure 2-3, Neil Gunther’s universal scalability law (USL) shows
that when you add contention and coherency to the picture, you
can end up with negative results. And adding more resources to the
system makes things worse.
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Figure 2-3. Amdahl’s law and Gunther’s universal scalability law
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USL extends Amdahl’s law by factoring in not just the serial fraction
but also contention (resource conflicts) and coherence (coordination
requirements). In practice, USL models more realistic scenarios in
which, after a point, adding more resources actually causes perfor-
mance to degrade. Consider a web application where each addi-
tional server needs to synchronize user session data with every other
server. Initially, adding servers improves performance, but as more
servers are added, the cost of coordination grows. Performance
starts to plateau and then even decline as coordination becomes
overwhelming.

Together, Amdahl’s law and USL emphasize that improving system
performance through added resources has diminishing returns and
eventual limits, requiring careful attention to software design to
minimize serial dependencies, contention, and coherence costs.

In addition, as latency becomes higher (as it does with distance), the
illusion cracks even more. The difference between the local present
and the remote past is even greater in a distributed system.

A helpful way to think about convergence in distributed systems
is that the system is always in the process of convergence but never
manages to fully “catch up” and reach a final state of convergence
(on a global system scale). This is why it is so important to think
in terms of consistency boundaries and carefully define your units
of consistency—small islands of strong consistency in a river of
constant change and uncertainty—that can give you some level of
predictability and certainty.

When possible, design systems for eventual consistency or causal
consistency, leveraging asynchronous messaging (see “Go Async” on
page 44), which tolerates delays and temporary unavailability of its
participants (e.g., using an event-driven architecture, certain NoSQL
databases, and CRDTs). This allows the system to stay available and
eventually converge and, in the case of failure, automatically recover.
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The Different Flavors of Eventual Consistency

A great discussion on the different semantics of eventual con-
sistency can be found in “Eventually Consistent—Revisited” by
Werner Vogels, chief technology officer of Amazon. He defines the
different types as follows:

Causal consistency
If process A has communicated to process B that it has updated
a data item, a subsequent access by process B will return the
updated value, and a write is guaranteed to supersede the ear-
lier write. Access by process C that has no causal relationship
to process A is subject to the normal eventual consistency
rules.

Read-your-writes consistency
This is an important model where process A, after it has upda-
ted a data item, always accesses the updated value and will
never see an older value. This is a special case of the causal
consistency model.

Session consistency
This is a practical version of the previous model, where a
process accesses the storage system in the context of a session.
As long as the session exists, the system guarantees read-your-
writes consistency. If the session terminates because of a cer-
tain failure scenario, a new session needs to be created, and the
guarantees do not overlap the sessions.

Monotonic read consistency
If a process has seen a particular value for the object, any
subsequent accesses will never return any previous values.

Monotonic write consistency
In this case, the system guarantees serialization of the writes by
the same process. Systems that do not guarantee this level of
consistency are notoriously hard to program.

If strong consistency is inherently needed for the correctness of a
use case, we need to apply it judiciously and selectively, with clearly
defined consistency boundaries, keeping the unit of consistency as
small as possible to retain a maximum of scalability and availability.
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Decouple in Time

Process and communicate asynchronously to avoid coordination and
waiting.

It's been said that “silence is golden,” and it is as true in software
systems as in the real world. Amdahls law and the USL show (see
“Tailor Consistency” on page 27) that we can lift the ceiling on
scalability by avoiding needless communication, coordination, and
waiting.

There are still times when we have to communicate and coordinate
our actions. The problem with blocking on resources—such as with
I/O as well as when calling a different service—is that the caller,
including the thread it is executing on, is held hostage waiting
for the resource to become available. During this time, the calling
component (or a part thereof) is unavailable for other requests.

This can be mitigated or avoided by employing temporal decoupling.
Temporal decoupling helps break the time availability dependency
between remote components. When multiple components synchro-
nously exchange messages, it presumes the availability and reacha-
bility of all these components for the duration of the exchange. This
is a fragile assumption in the context of distributed systems, where
we can't ensure the availability or reachability of all components
in a system at all times. By introducing temporal decoupling in
our communication protocols, one component does not need to
assume and require the availability of the other components. It
makes the components more independent and autonomous and, as
a consequence, the overall system more reliable. Popular techniques
to implement temporal decoupling include durable message queues,
append-only journals, and publish-subscribe topics with a retention
duration.

With temporal decoupling, we give the caller the option to perform
other work, asynchronously, rather than be blocked waiting on the
resource to become available (see “Go Async” on page 44). This can
be achieved by allowing the caller to put its request on a queue, regis-
ter a callback to be notified later, return immediately, and continue
execution (e.g., nonblocking I/O). A great way to orchestrate call-
backs is to use a finite-state machine (FSM); other techniques include
actors, futures/promises, dataflow variables, async/await, coroutines,
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and composition of asynchronous functional combinators in stream-
ing libraries.

The aforementioned programming techniques serve the higher-level
purpose of affording each component more freedom in choosing to
process incoming information in its own time, according to its own
prioritization. As such, this decoupling also gives components more
autonomy (see “Assert Autonomy” on page 25).

Decoupling in time through asynchronous messaging and I/O is
crucial for building resilient and scalable cloud systems. By allowing
services to communicate without waiting for immediate responses,
asynchronous messaging reduces dependency on the availability
of each component, enabling the system to handle higher loads
without bottlenecks.

For example, a cloud-based ecommerce platform can process orders
asynchronously, allowing inventory checks, payment processing,
and notifications to run independently. This prevents one service
from stalling the entire process if it experiences delays or down-
time. Queuing messages enables processing to continue as resources
become available, improving fault tolerance and ensuring the system
can handle varying loads effectively.

Ultimately, asynchronous communication allows cloud systems
to scale more easily and handle disruptions gracefully, ensuring
smoother operation and better performance.

Decouple in Space

Create flexibility by embracing the network.

We can only create an elastic and resilient system if we allow it
to live in multiple locations so that it can function when parts
of the underlying hardware malfunction or are inaccessible; in
other words, we need to distribute the parts across space. Once dis-
tributed, the now-autonomous components collaborate, as loosely
coupled as is possible for the given use case, to make maximal use of
the newly won independence from one specific location.

This spatial decoupling makes use of network communication to
reconnect the potentially remote pieces. Since all networks function
by passing messages between nodes and since this asynchronous mes-
saging (see “Go Async” on page 44)—and by extension, event-based
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communication—takes time, spatial decoupling introduces message-
passing on a foundational level.

A key aspect of asynchronous messaging and/or APIs is that they
make the network, with all its constraints, explicit and first-class
in design. Asynchronicity forces you to design for failure and uncer-
tainty (see “Embrace Failure” on page 22 and “Accept Uncertainty”
on page 17) instead of pretending that the network is not there and
trying to hide it behind a leaky local abstraction, just to see it fall
apart in the face of partial failures, message loss, or reordering.

It also allows for location transparency (see “Leverage Location
Transparency” on page 49), which gives you one single abstraction
for all component interactions, regardless of whether the component
is co-located on the same physical machine or is in another rack
or even another data center. Asynchronous APIs allow cloud and
edge infrastructures, such as discovery services and load balancers,
to route requests to wherever the container or virtual machine
(VM) is running while embracing the likelihood of ever-changing
latency and failure characteristics. This provides one programming
model with a single set of semantics, regardless of how the system is
deployed or what topology it currently has (which can change with
its usage).

Spatial decoupling enables replication, which ultimately increases
the resilience of the system and availability (see “Replicate for Resil-
ience” on page 79). By running multiple instances of a component,
these instances can share the load. Thanks to location transparency,
the rest of the system does not need to know where these instances
are located, but the capacity of the system can be increased transpar-
ently, on demand. If one instance crashes, becomes unavailable due
to network problems, or is undeployed, the other replicas continue
to operate and share the load. This capability for failover is essential
to avoid service disruption.

Decoupling in space with asynchronous messaging and location
transparency enables cloud applications to scale and adapt without
dependency on specific locations. For example, in an ecommerce
system, a payment service might asynchronously send a PaymentPro
cessed event to a shipping service through a message broker. The
shipping service doesn’t need to know the exact address of the pay-
ment service, whether it’s located in the same region, or even if it is
currently available. If demand spikes, new instances of the shipping
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service can be launched in multiple regions, with the message broker
transparently routing events to them. This flexibility allows services to
scale independently, handle regional failures, and dynamically distrib-
ute load, improving resilience and responsiveness.

Handle Dynamics

Continuously adapt to varying demand and resources.

Applications need to stay responsive under workloads that can vary
drastically and regular system maintenance and management (e.g.,
upgrades and schema changes) and continuously adapt to the situa-
tion, ensuring that supply always meets demand while not overallo-
cating resources. This means being elastic and reacting to changes in
the input rate by increasing or decreasing the resources allocated to
service these inputs. Applications must allow the throughput to scale
up or down automatically to meet varying demands.

Where resources are fixed, we need to adjust the scope of processed
inputs and signal this degradation to the outside. We can do this
by discarding requests and letting the client retry (so-called “load
shedding”) or discarding less relevant parts of the input data. For
example, we can discard older or more far-reaching sensor data
in edge applications or shrink the horizon or reduce the quality
of forecasts in autonomous vehicles. This trades a reduction in effi-
ciency for the sustained ability to function at all and guides design.

Firstly, being able to make such trade-offs at runtime requires the
component to be autonomous (see “Assert Autonomy” on page 25).
It helps greatly if the component is decoupled in both space and
time (see “Decouple in Space” on page 33 and “Decouple in Time”
on page 32) and exposes only well-designed protocols to the outside.
This allows, for example, changes to sharding and replication (see
“Replicate for Resilience” on page 79) to be done transparently.

Secondly, you need to be able to make educated guesses. The system
must track relevant live usage metrics and continuously feed the
data to predictive or reactive scaling algorithms so that it can get
real-time insights into how the application is being used and is cop-
ing with the current load. This allows the system to make informed
decisions about how to scale the system’s resources or functional
parameters up or down, ideally in an automatic fashion (so-called
“auto-scaling”).
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Finally, distributed systems undergo different types of dynamics. In
the cloud and at the edge, the topology is continuously evolving,
reinforcing the need for spatial decoupling. Service availability is
also subject to evolution: services can come and go at any time—a
type of dynamism that heightens the need for temporal decoupling.

Now that we have discussed the foundational principles of dis-
tributed application architecture, let's see how we can apply them
in practice through the use of patterns.
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CHAPTER 3

Patterns of Distributed
Application Architecture

How can we put these principles into practice? Let’s now dive deep
into twenty of the most useful and proven patterns, best practices,
and techniques for building elastic, resilient, highly performant, pre-
dictable, and maintainable distributed applications. Some of these
patterns are probably more best practices and techniques that have
proved to work very well, but let’s call them all patterns now for
simplicity. These discrete patterns compose, and the sum is greater
than the parts; they collectively form a toolbox that can help you
tackle and navigate the complexities of cloud and edge with ease.

Partition State

Divide state into smaller chunks to leverage parallelism of the system.

Distributed applications leverage parallelism of the underlying hard-
ware by executing simultaneously on groups of computers that
don’t share memory. This parallel usage of multicore servers brings
the coordination and concurrency control challenge to the multima-
chine level and makes the handling of state as a monolith inefficient
and oftentimes impossible. Partitioning of state also helps with scal-
ability: while each node can only store and process a finite dataset,
a network of them can handle larger computational problems. Addi-
tionally, partitioning enhances fault tolerance by isolating failures to
specific partitions (using bulkheads, see “Embrace Failure” on page
22), so issues in one area don't disrupt the entire system.
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The well-established pattern used by most distributed systems
involves splitting the monolithic state into a set of smaller chunks,
or partitions, that are managed mostly independently of each other.
Ideally, they are separated into tasks termed “embarrassingly paral-
lel”. In this way, they can leverage the available parallelism for more
efficient and fault-tolerant execution.

Some datasets (e.g., accounts, purchase orders, devices, and user ses-
sions) partition naturally. Others require more careful consideration
of how to divide the data and what to use as a partition key.

Sometimes we need to get an aggregated view of the data across
data partitions. Here, a great solution is to leverage event sourcing
(see “Log Events” on page 51), allowing components to subscribe to
the event stream. State changes (see “Communicate Facts” on page
38) from multiple other components cause the event stream to build
up its own aggregated state model and/or use CQRS (see “Untangle
Reads and Writes” on page 54). This is a way to create aggregated
read projections (joins) managed by your database of choice.

Partitioning of state often comes with some sacrifice of consistency.
The very idea of managing data partitions mostly or completely
independently from each other goes contrary to the coordination
protocols required to ensure guarantees that span partition bound-
aries, such as atomicity and isolation. For that reason, state parti-
tioning usually requires an explicit tradeoff between performance,
scalability, and fault tolerance on one hand and consistency and
simplicity on the other.

Communicate Facts

Choose immutable event streams over mutable state.

Mutable state is not stable throughout time. It always represents
the current/latest value and evolves through destructive in-place
updates that overwrite the previous values. The essence of the prob-
lem is that mutable variables in most programming languages treat
the concepts of value and identity as the same thing. This coupling
prevents the identity from evolving without changing the value it
currently represents, forcing us to safeguard it with mutexes and the
like.

Concurrent updates to mutable state are a notorious source of
data corruption. While there exist well-established techniques and
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algorithms (e.g., low-level techniques like mutexes, barriers, and
fork—-join and high-level constructs like coroutines, actors, and
futures/promises) for safe handling of updates to shared mutual
state, these bring two major downsides. The complexity of these
algorithms make it easy to get them wrong, especially as code
evolves, and they require a certain level of coordination that places
an upper bound on performance and scalability (see Amdahl’s law
and USL in “Tailor Consistency” on page 27). Due to the destructive
nature of updates to mutable state, mistakes can easily lead to cor-
ruption and loss of data that are expensive to detect and recover
from.

Instead, rely on immutable state—values representing facts—which
can be shared safely as local or distributed events without worrying
about corrupt or inconsistent data and without guarding it with
transactions or locks.

A fact is immutable and represents something that has already hap-
pened sometime in the past, something that cannot be changed or
retracted. It is a stable value that you can reason about and trust,
indefinitely. After all, we can’t change the past, even if we sometimes
wish that we could. Knowledge is cumulative and occurs either by
receiving new facts or by deriving new facts from existing facts. We
invalidate existing knowledge by adding new facts to the system that
refute existing facts. Facts are never deleted, only made irrelevant to
current knowledge.

Facts stored as events in an event log, in their causal order, can rep-
resent the full history of a component’s state changes through time
(using event sourcing, see “Log Events” on page 51 and Chapter 4 on
events-first design) while serving reads with low latency, safely from
memory (a pattern called memory image).

Facts are best shared by publishing them as events through the
component’s event stream, where they can be subscribed to and
consumed by others—components, databases, or subsystems. Here
they serve as a medium for communication, integration, and repli-
cation. This event stream can be implemented in many ways, using
dedicated event sourcing libraries (e.g., Akka and Axon), message
brokers (e.g., Kafka and Pulsar), optimized append-only storage, or
regular databases. The important thing is that the event stream be
append-only, consisting of immutable events, preventing writable
side channels, being written to by a single producer, and being
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made available to be subscribed to by (zero to) many consumers.
In practice, it can also be important to be able to read the events
from a cursor/index to allow replay of events on failure or network
problems and to support delivery guarantees (e.g., at-least-once or
exactly-once delivery, usually together with deduplication).

Isolate Mutations

Contain and isolate mutable state using bulkheads.

When you have to use mutable state, never share it. Instead, contain
it together with the associated behavior, using isolated and parti-
tioned compartments' that are separated by bulkheads (as discussed
in “Embrace Failure” on page 22), thus adopting a shared-nothing
architecture. This contains failure, prevents it from propagating out-
side the failed component, limits its scope, and localizes it to make it
easier to pinpoint and manage. It also avoids the escalation of minor
issues, which can lead to cascading failures and take down an entire
system. For example, recall that validation errors are not failures but
are part of the normal interaction protocol of a stateful component
(see “Supervise Subordinates” on page 68 for more details).

Bulkheads are most easily installed by having the compartments
communicate using asynchronous messaging (see “Go Async” on
page 44), which introduces a protocol boundary between the com-
ponents, isolating them in both time and space (see “Decouple
in Time” on page 32 and “Decouple in Space” on page 33). Asyn-
chronous messaging also enables observation of the fluctuating
demands, thereby avoiding the flooding of a bulkhead and provid-
ing a unit of replication if needed.

Only use mutable state for local computations within the consistency
boundary of the bulkheaded component—a unit of consistency that
provides a safe haven for mutations, completely unobservable by the
rest of the world. When the component is done with local process-
ing and ready to tell the world about its results, then it creates an
immutable value representing the result—a fact—and publishes it to
the world.

1 Cell-based architecture is an interesting take on the concept of partitioning state and
isolating mutations in bulkheads.
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The bulkheaded components should ideally use single-threaded exe-
cution—Ilike actors in Akka—to simplify the programming model
and avoid concurrency-related problems such as deadlocks, race
conditions, and corrupt data.

In this model, others can rely on stable and immutable values for
their reasoning, whereas each component can internally still safely
benefit from the advantages of mutability (like familiarity and the
simplicity of coding and algorithmic efficiency), strong consistency,
and reduced coordination and contention (through the single writer
principle).

Coordinate Dataflow

Orchestrate a continuous steady flow of information.

Distributed systems shine in the creation of data-driven applications
through the composition of components in workflows. Thinking in
terms of dataflow—how the data flows through the system, what
behavior it is triggering and where, and how components are causally
related—allows focusing on the behavior instead of on the structure.

Orchestrate workflow and integration by letting components (or
subsystems) subscribe to each other’s event streams (see “Communi-
cate Facts” on page 38), consuming on demand the asynchronously
published facts.

Consumers should control the rate of consumption—which may
well be decoupled from the rate of production, depending on the
use case. It is impossible to overwhelm a consumer that controls
its own rate of consumption. This is one of the reasons that some
architectures employ message queues: they absorb the extra load
and allow consumers to drain the work at their leisure. Some archi-
tectures design “poison pill” messages as a way to altogether cancel
the production of messages.

a service by sending a special type of message—a so-
called “poison pill>—to the service indicating that no
more messages will be sent, allowing the consumers to
terminate in a graceful manner.

m The poison pill pattern is used to gracefully shut down
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This combination—a consumer that controls its rate of consump-
tion and an out-of-band mechanism to halt the rate of production—
supports flow control. Flow control is an obvious win at the systems
architecture level, but it’s all too easy to ignore at lower levels. Flow
control needs to be managed end to end, with all its participants
playing ball lest overburdened consumers fail or consume resources
without bound.

A common implementation of flow control is through backpressure,
in which the producer is forced to slow down when the consumer
cannot keep up. Backpressure increases the reliability of not just
the individual components but also the data pipeline and system
as a whole. It is usually achieved by having a backchannel going
upstream in which downstream components can signal whether the
rate of events should be slowed down or sped up (see Figure 3-1).
It is paramount that all of the parties in the workflow/data pipeline
participate and speak the same protocol.

-===% Data External
Backpressure data source
4 \\
/ \
J/ \ )
Overflow f--- ] --- 7 -—-
------- : Validate Enrich ’ | Storage I
Data stream>[pr°tec“0"} ’[ ] ’[ ] s
1 i
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Figure 3-1. Backpressure includes having a backchannel where the con-
sumer can manage control flow by communicating with the producer

Another scheme is to place a message queue between the producer
and the consumer and react to the utilization of this queue, for
example, by giving the consumer more resources or by slowing
down or degrading the functionality of the producer.

We need to take particular care for the dataflows at the edges, where
components compose and interact with each other or with third-
party systems. Establishing protocols for graceful degradation (see
“Guard Connections” on page 62) and flow control means decreasing
the likelihood of failure, and when it strikes—which it inevitably
will—it is beneficial to have a control mechanism in place to manage
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it (see “Embrace Failure” on page 22 and “Supervise Subordinates”
on page 68).

Localize State

Take ownership of data by co-locating state and processing.

In data-intensive applications and use cases, it is often beneficial
to co-locate state and processing, maintaining great locality of refer-
ence while providing a single source of truth. Co-location allows for
low-latency and high-throughput data processing and more evenly
distributed workloads.

ing highly performant systems. There are two types of
reference locality: temporal (reuse specific data) and
spatial (keep data relatively close in space). It is impor-
tant to understand and optimize for both.

m Locality of reference is an important technique in build-

One way to achieve co-location is to move the processing to the state.
We can effectively achieve this by using cluster sharding (e.g., shard-
ing on the key of the partitioned dataset; see “Replicate for Resilience”
on page 79) of in-memory data where the business logic is executed
in-process on each shard, avoiding read and write contention. Ideally,
the in-memory data should represent the single source of truth by
mapping to the underlying storage in a strongly consistent fashion
(e.g., using patterns like event sourcing and memory image; see “Log
Events” on page 51).

Co-location is different from, and complementary to, caching, where
you maintain read-only copies of the most frequently used data
close to its processing context. Caching is useful in some situations
(in particular when the use case is read-heavy, meaning it mostly
serves read requests). But it adds complexity around staying in sync
with its master data, making it hard to maintain the desired level of
consistency, and therefore cached data cannot be used as the single
source of truth (as discussed in “The Unfortunate Trend of Stateless
Protocols” on page 7).

Another way to get co-location is to move the state to the processing.
We can achieve this by replicating the data to all nodes to where the
business logic runs (e.g., out to the edge of the network; see “Tackling
the Inherent Constraints of the Edge” on page 9) while leveraging
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techniques that ensure eventually consistent convergence of the data
(e.g., using CRDTs with gossip protocols as discussed in “Accept
Uncertainty” on page 17 and “Gossip for Convergence” on page 85).
Or you can use distributed stream processing to create streaming data
pipelines, crossing multiple nodes, that push data downstream until
aggregation of the processed data can be made. These techniques
have the additional advantage of ensuring high degrees of availability
without the need for additional storage infrastructure, and they can
be used to maintain data consistency across all levels of the stack—
across components, nodes, data centers, and clients where strong
consistency is not required.

We can also combine these two approaches by co-locating state and
processing inside the consistency boundary of mobile, self-contained,
autonomous, and location-transparent components (e.g., actors; see
“Model with Actors” on page 66), allowing us to physically co-locate
state and processing with the end user. A component designed this
way has everything it needs to serve the end user locally, which allows
for extreme levels of low latency and resilience. The component can
lose its connection to the backend cloud, or to its peers, and still
continue executing and serving its users as if nothing has happened
(i.e., local-first software design).

Go Async

Embrace asynchronous messaging and nonblocking execution.

An idle component should not needlessly hold on to resources
(e.g., thread, socket, or file) that it is not using. Employing asynchro-
nous and nonblocking execution and I/O ensures more efficient use
of resources. It helps minimize contention (congestion) on shared
resources in the system, which is one of the biggest barriers to
elasticity, scalability, low latency, and high throughput (see Amdahl’s
law and USL in “Tailor Consistency” on page 27).

As an example, let’s take a service that needs to make 10 requests
to 10 other services and compose their responses. Suppose that
each request takes 100 milliseconds. If it needs to execute these in
a synchronous sequential fashion, the total processing time will be
roughly 1 second, as demonstrated in Figure 3-2.
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Figure 3-2. Sequential execution of tasks means that each request takes
100 milliseconds

However, if it is able to execute them all asynchronously, the
total processing time will just be 100 milliseconds, as shown in
Figure 3-3.

Request

@@@{@t@)}@@@

Figure 3-3. Parallel execution of tasks results in an order of magnitude
difference for the client that made the initial request

Blocking is problematic because when a component makes a block-
ing call, it ties up the thread while waiting for a result, preventing
the thread from doing any other work. Since threads are a limited
resource, this inefficient use can degrade system performance. By
using asynchronous, nonblocking calls, the thread is freed up to
handle other tasks while the first component waits for the result,
such as through an async callback or message. This approach leads
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to more efficient use of resources, improving cost, energy, and per-
formance. See Figure 3-4.
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Figure 3-4. The difference between blocking and nonblocking execution
is one of efficiency

Embracing asynchronicity is as important when communicating
with different resources within a service boundary as it is when
communicating between services and between the service and the
client. To reap the full benefits of nonblocking execution, all parts
in a request chain need to participate—from the request dispatch,
through the service implementation, down to the data storage, and
back.

This means using asynchronous messaging, which can help you
to build loosely coupled systems with autonomous and collabo-
rative components. Having an asynchronous boundary between
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components is necessary in order to decouple them and their com-
munication flow in time, allowing for concurrency, and to decou-
ple their flow in space (see “Decouple in Time” on page 32 and
“Decouple in Space” on page 33), allowing for distribution, mobility,
location transparency (see “Leverage Location Transparency” on
page 49), elasticity, and resilience (through bulkheading; see “Iso-
late Mutations” on page 40). Here, leveraging event-driven design
(see “Events-First Domain-Driven Design” on page 108), actors (see
“Model with Actors” on page 66), message queues, and distributed
stream-processing products can help.

Observe Dynamics

Understand your system by looking at its dynamics.

Distributed systems are complex, with components spread across
regions and services, often under heavy user load. This complexity
means that issues can arise from multiple sources (networking,
resources, third-party services), and without observability, it’s hard
to identify the root cause of issues. Observability helps improve reli-
ability, enhances user experience, and reduces mean time to recov-
ery (MTTR) by providing real-time insights and making proactive
issue resolution possible.

With the increasing complexity of applications and systems, intro-
specting a system becomes a stringent requirement. Observability
is about collecting data to answer a simple question: how is your sys-
tem doing? Observability enables you to understand what is going
on and provides a more precise status of the system—both now and
historically to help identify trends.

In general, observability is comprised of application metrics, net-
work metrics, health reports, logs, and traces. We can break it down
into three categories:

Logs
Capture structured logs from each service with relevant context
(e.g., user ID, request ID) for tracking user flows. For instance,
if a service fails, logs should capture the error and its context.

Metrics
Record metrics like request latency, success rates, and error
counts. For example, track the response time of the service and
alert if latency exceeds a threshold.
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Traces
Use distributed tracing to connect requests across services. For
example, a trace would capture the journey of requests from the
frontend, through the system, to the backend services, provid-
ing a clear view of where any delay occurs.

These data points can be centralized in a cloud-based observability
platform, deriving other synthetic metrics and alerts and allowing
teams to monitor, analyze, and respond to issues in real time.

In distributed systems, it is indispensable to observe not only appli-
cations but also their communication tissue. Application metrics are
often not sufficient to allow you to wisely make decisions about
the overall state of the system. By looking at the communication,
however, you extract the system dynamics and understand how the
data flows.

Collecting information about data consumers, producers, exchanges,
and queue sizes allows identification of bottlenecks and misbehaving
components. Looking at the evolution of the consumed message rate
greatly helps to find those parts of the system that are running behind.
This level of observation is essential to drive elasticity decisions and
continuously adjust your system to meet the current demands.

Things to look out for when implementing observability include:

Data overload
Too many logs, metrics, or traces can become overwhelming
and lead to alert fatigue. Instead, focus on essential signals that
indicate health and performance.

Incomplete traces
Missing spans in tracing can obscure dependencies and leave
gaps in understanding workflows, so ensure all services are
properly instrumented.

Latency and cost
Capturing and storing telemetry data in high volumes can
increase latency and cloud costs. Using sampling or prioritizing
critical logs and metrics can help manage both.

In summary, observability provides the visibility necessary to main-
tain cloud systems effectively by centralizing telemetry data. It
enables swift troubleshooting, robust monitoring, and informed
decisions that support system resilience and user satisfaction.
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Leverage Location Transparency

One communication abstraction across all dimensions of scale.

Elastic systems need to be adaptive and react continuously to
changes in demand. They need to gracefully and efficiently increase
and decrease scale. One key insight that simplifies this problem
immensely is to realize that we are all doing distributed computing.
This is true whether we are running our systems on a single node
(with multiple independent CPUs communicating over the Intel
QuickPath Interconnect, or QPI, link) or on a cluster of nodes (with
independent machines communicating over the network). Embrac-
ing this fact means that there is little conceptual difference between
scaling vertically on multicore or horizontally on the cluster in
terms of programming abstractions and system design.

The traditional way is to rely on different tools, techniques, and
semantics for each of the different levels of scale, with increasing
complexity and pain. For example, you would use callbacks within
a single core; threads and locks across cores; and publish/subscribe
(pub/sub) messaging across nodes, data centers, and clouds. These
different paradigms and abstractions need to work together in con-
cert as a single whole, but they are full of semantic mismatches.
They do not compose or enforce a rigid topology, and they force
us to hardcode the style of communication and the system topology
into the design and implementation.

Instead, unifying all communication through asynchronous messag-
ing (see “Go Async” on page 44) gives us one single programming
model with unified semantics regardless of how the system is cur-
rently deployed and its current topology. It gives us the ability to
scale the system in the same way, using the same programming
abstraction for communication, with the same semantics, across
all dimensions of scale—from core to socket, from socket to CPU,
from CPU to container, from container to server, from server to
rack, from rack to data center, from data center to region, from
region to multi-cloud, and from multi-cloud to global edge. So no
matter where the recipient resides, we communicate with it in the
same way. The only semantically equivalent way to do this is via
asynchronous messaging.

This decoupling in space, enabled through asynchronous messag-
ing, and decoupling of the runtime instances from their references

Leverage Location Transparency | 49


https://oreil.ly/L--_P
https://oreil.ly/L--_P

is what we call location transparency. Location transparency is often
mistaken for “transparent distributed computing,” while it is actually
the opposite: we embrace the network and all its constraints—like
partial failure, network splits, dropped messages, and its asynchro-
nous and message-based nature—by making them first-class in the
programming model.?

Location transparency should not be confused with transparent
remoting or distributed objects (which Martin Fowler claimed “sucks
like an inverted hurricane”). Transparent remoting hides the network
and tries to make all communication look like it’s local. The problem
with this approach, even though it might sound compelling at first,
is that local and distributed communication have vastly different
semantics and failure modes. Reaching for it only sets us up for
failure. Location transparency does the opposite by embracing the
constraints of distributed systems.

This is where the beauty of asynchronous messaging comes in,
because it unifies local and distributed communication, making
communication explicit and first-class in the programming model
instead of hiding it behind a leaky abstraction’ as is done in remote
procedure call (RPC),* EJBs, CORBA, distributed transactions, and
so on.

If all of our components support location transparency and mobility,
and local communication is just an optimization, then we do not
have to define a static system topology and deployment model up
front. We can leave this decision to the operations personnel and the
runtime, which can adapt and optimize the system depending on
how it is used.

Another benefit of asynchronous message passing is that it tends to
shift focus, from low-level plumbing and semantics to the workflow
and communication patterns in the system, and it forces you to
think in terms of collaboration—about how data flows between the
different services, their protocols, and interaction patterns.

2 Location transparency is in perfect agreement with “A Note on Distributed
Computing” by Jim Waldo and colleagues.

3 As brilliantly explained by Joel Spolsky in his classic piece “The Law of Leaky
Abstractions”.

4 The fallacies of RPC have not been better explained than in Steve Vinoski’s
“Convenience Over Correctness”.
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Log Events

Make the event log the backbone for durability, communication, and
integration.

Disk space used to be very expensive, and optimizing for cost effi-
ciency is one of the reasons why most SQL databases are using
update-in-place—overwriting existing records with new data as it
arrives.

But it comes with a high price, as Jim Gray, Turing Award winner
and legend in database and transaction processing research, once
said: “Update-in-place strikes many systems designers as a cardi-
nal sin: it violates traditional accounting practices that have been
observed for hundreds of years.”

Still, money talked, and create-read-update-delete (CRUD) was
born.

The good news is that today disk space is incredibly cheap, so there
is little to no reason to use update-in-place for system of record. We
can afford to store all the data that has ever been created in a system,
giving us the entire history of everything that has ever happened
in it.

When designing data-intensive, event-driven systems, we don't need
to rely on update and delete anymore. We just create new facts—
either by adding more knowledge or by drawing new conclusions
from existing knowledge—and read facts from any point in the
history of the system. CRUD has been distilled to CR.

This is general advice that is meant to guide the design and thought
process; by no means is it a rule. There might be legal (data retention
laws) or moral (users requesting their account to be deleted) require-
ments to physically delete data after a particular period of time. Still,
using traditional CRUD is most often the wrong way to think about
designing elastic and highly performant data-driven systems.

One of the most scalable ways to store facts as events is an event log.
It allows us to store them in their natural causal order—the order
in which they were created. The event log is not just a database

5 Jim Gray, “The Transaction Concept: Virtues and Limitations”, paper presented at
the Seventh International Conference on Very Large Databases, Cannes, France,
September 1981.
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of the current state like traditional SQL databases® but a database
of everything that has ever happened in the system, its full history.
Here, time is a natural index, making it possible for you to travel
back and replay scenarios for debugging purposes, auditing, replica-
tion, failover, and so on. The ability to turn back time and debug the
exact things that have happened, at an exact point in the history of
the application, should not be underestimated. As Pat Helland says:
“The truth is the log. The database is a cache of a subset of the log.”

A popular pattern for event logging is event sourcing, in which
we capture state changes—triggered by an incoming command
or request—as new events to be stored in the event log, in the
order they arrive. These events represent the fact that something
has already happened (i.e., OrderCreated, PaymentAuthorized, or
PaymentDeclined).

The events are stored in causal order, providing the full history
of all the events representing state changes in the service (and in
case of the commands, the interactions with the service). Because
events most often represent transactions, the event log essentially
provides us with a transaction log® that is explicitly available to us
for querying, auditing, replaying messages from an arbitrary point
in time for component failover, debugging, and replication. This
is in contrast to having it abstracted away from the user, as seen
in SQL databases. It gives us a bulletproof failover mechanism and
audit log. See Figure 3-5 for an illustration of a (very simple) event-
sourced ordering and payment system (a more detailed discussion
of this sample can be found in “Model Consistency Boundaries with
Entities” on page 113).

6 You can of course use a SQL database for append-only data storage (e.g., as the event
log in event sourcing), but it's not how it is most often used and requires careful and
deliberate use to enforce.

7 The quote is taken from Pat Helland’s insightful paper “Immutability Changes
Everything”.

8 The best reference for transactional systems is Jim Gray’s classic book Transaction
Processing: Concepts and Techniques.
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Figure 3-5. Example of using event sourcing with CQRS

One benefit of using event sourcing is that it allows the compo-
nent/service to keep an always up-to-date snapshot of the latest
dataset in memory, instead of having to reconstitute it from durable
storage with every request (or periodically). As such, each compo-
nent has its own memory image, a fully durable in-memory data-
base that can be used to access the latest state with safety and
correctness.

Well-designed event-sourcing implementations, such as the one in
Akka, will shard your entities across the cluster and route com-
mands to the shards accordingly so that the entity only resides in
one place (see the accompanying note) while being replicated to
replicas for availability (see “Replicate for Resilience” on page 79 and
“Gossip for Convergence” on page 85).

Akka allows entities to have multiple live instances

m serving both reads and writes. It leverages primary-pri-
mary (sometimes called active-active or multi-master)
replication (see “Replicate for Resilience” on page 79)
and CRDTs (see “Accept Uncertainty” on page 17)
for merging concurrent updates. This allows for multi-
region and multi-cloud deployment of a single entity
while supporting replicated read and replicated write
semantics.
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It also helps to avoid the infamous object-relational impedance mis-
match, allowing us to use whatever data structures we find convenient
for our domain model inside the components with no need to map
these to underlying database constructs. The master data resides on
disk in the optimal format for append-only event logging, ensuring
efficient write patterns—such as the single writer principle—that
work in harmony with modern hardware instead of at odds with it.
This gives us great “mechanical sympathy.” As a quote long attributed
to Jackie Stewart, three-time Formula One world champion, says:
“You don’t have to be an engineer to be a racing driver, but you do
have to have mechanical sympathy.”

If we now add command query responsibility segregation (CQRS,
discussed next) to the mix, to address the query and consistency
problems, we have the best of both worlds without many of the
drawbacks.

Each event-sourced entity usually has an event stream (see “Com-
municate Facts” on page 38) through which it publishes its events to
the rest of the world (in practice, it is a message broker or similar).
This gives us the possibility of having multiple parties subscribe to
the event stream for different purposes. Examples include a database
optimized for queries, services that react to events as a way of
coordinating workflow, and supporting infrastructure services like
audit or replication.

Untangle Reads and Writes

Scale your reads separately from your writes for better resilience and
scalability.

CQRS is a technique, coined by Greg Young, to separate the write
and read model from each other, opening up the possibility of using
different techniques to address each side of the equation.

The read model is most often referred to as the query side or query
model in CQRS, but that somewhat misses the main point. The
read model is better defined as anything that depends on the data
that was written by the write model. This includes query models
but also other readers subscribing to the event stream—including
other services performing a side effect or any downstream system
that acts in response to the write. This broader view of the read
model, powered by the event stream, can be that it is the foundation
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for reliably orchestrating workflow across services, including tech-
niques for managing consistency guarantees and at-least-once deliv-
ery of commands.

This makes it easy for each service to own its own data (for details,
see “Exclusive State Ownership” on page 102). For example, say
the OrderService in Figure 3-6 needs product information from the
InventoryService. Instead of asking the InventoryService all the
time, the OrderService will have its own (read-only) representation
of the product information, a “copy” that is updated in real time by
subscribing to events from the InventoryService.

The write and read models exhibit very different characteristics and
requirements in terms of data consistency, availability, and scalabil-
ity. The benefit of CQRS is that it allows each model to be stored in
its optimal format.

(1) Send
(6) Query Orders service command Payment
(user) service
(2) Send
(4) Receives event
the event

(5) Receives (3) Send

the event event
Event stream Eventlog

Read side Write side
model model

Figure 3-6. Separating the write side and read side using CQRS

There are two main advantages of using CQRS:

Resilience

Separating the read and write models gives us temporal decou-
pling of the writes and the actions performed in response to
the writes—whether it’s updating an index in a query database,
pushing the events out for stream processing, performing a side
effect, or coordinating work across other services. Temporal
decoupling means that the service doing the write as well as
the service performing the action in response to the write don’t
need to be available at the same time. This avoids the need
to handle things like retries; increases reliability, stability, and
availability in the system as a whole; and allows for eventual
consistency (as opposed to no consistency guarantees at all).
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Scalability

The temporal decoupling of reads and writes gives us the ability
to scale them independently of one another. For example, in a
heavily loaded read-mostly system, we can choose to scale out the
query side to tens or even hundreds of nodes, while keeping the
write side at three to five nodes for availability. For a write-mostly
system (probably using data-sharding techniques, see “Replicate
for Resilience” on page 79), we would do the opposite. A decou-
pled design like this makes for a lot of flexibility, gives us more
headroom and knobs to turn, and allows us to better optimize the
hardware efficiency, putting the money where it matters most.

This design allows us to have multiple read models (sometimes called
views), each maintaining its own view of the data. For example, you
could at the same time use a NoSQL or SQL database for regular
queries, a database optimized for search for general search functional-
ity, a time-series database for time-based data, and distributed stream
processing for more thorough data mining of historic trends. You can
even add additional read models dynamically, at any point in time,
because you can simply replay the event log—the history—to bring
the new model up to speed. In other words, by having the event log
as the single source of truth in your system, you easily can produce
any kind of view on the data that works best for the specific use
case—so-called polyglot persistence.

Its worth mentioning that CQRS is a general design pattern that
you can use successfully with almost any persistence strategy and
storage backends, but it happens to fit perfectly with event sourcing
(see “Log Events” on page 51) in the context of event-driven and
message-driven architectures. This is why you will often hear them
mentioned in tandem. The opposite is also true: you can use event
sourcing successfully without CQRS, reaping the benefits of the
event-driven model, log-based structure, historic traceability, and so
on, with the option of adding CQRS later if the need arises.
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One trade-off is that CQRS with event sourcing forces you to tackle
the essential complexity’ of the problem head on. This is often
a good thing, but if you are building a minimum viable product
(MVP) or prototype, a throwaway that you need to get to market
quickly in order to test an idea, you might be better off starting
with CRUD (and a monolith). Then you would move to a more
sustainable design after it has proved its value in the market.

Another trade-off in moving to an architecture based on CQRS with
event sourcing is that the write side and read side will take time to
be consistent. It takes time for events to propagate between the two
storage models, which often reside on separate nodes or clusters.
The delay is often only a matter of milliseconds to a few seconds, but
it can have a big impact on the design of your system.

You can mitigate this problem by using the same database for both
the read and the write side and write the event and update the
read model in the same database transaction, ensuring that both are
updated atomically and remain strongly consistent. If you use this
approach, it is important to use it only within a single service and
not across different services (to ensure that every service owns its
own data, exclusively). That said, doing this can create performance
and availability problems and decrease the value of CQRS. There-
fore, it should be used very judiciously.

In general, using techniques such as the principles and patterns dis-
cussed in this guide—such as event-driven design, denormalization,
and minimized units of consistency—are essential, and they make
the trade-offs noted less of an issue. As we have discussed, it is
important to take a step back from years of preconceived knowledge
and biases and look at how the world actually works. The world
is seldom strongly consistent, so embracing reality—and the actual
semantics in the domain—often opens up opportunities to relax the
consistency requirements. In this way, it increases the headroom
for resilience, performance, and elasticity. Mine those opportunities
carefully.

9 You can find a good explanation of the difference between essential complexity and
accidental complexity in “Complexity: Accidental vs Essential” by John Spacey.
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Minimize Consistency

Batter the consistency mechanisms down to a minimum.

As James Hamilton says:'° “The first principle of successful scalabil-

ity is to batter the consistency mechanisms down to a minimum?”
To model reality, we often need to rely on weaker consistency guar-
antees than strong consistency."

The term ACID 2.0, coined'? by Pat Helland, is a summary of a set
of principles for eventually consistent protocol design. The acronym
is meant to somewhat challenge the traditional ACID from database
systems:

o A stands for associative, which means that the grouping of mes-
sages does not matter, and batching is possible.

o C is for commutative, which means that the ordering of mes-
sages does not matter.

o I stands for idempotent, which means that the duplication of
messages does not matter.

o D stands for distributed, which describes the environment and
context in which ACID 2.0 is applied.

There has been a lot of buzz about eventual consistency (see “Tailor
Consistency” on page 27), and for good reason. It allows us to raise
the ceiling on what can be done in terms of scalability, availability,
and reduced coupling.

However, relying on eventual consistency is sometimes not permis-
sible, because it can force us to give up too much of the high-level
business semantics. If this is the case, using causal consistency can
be a good option. Semantics based on causality is what humans
expect and find intuitive. The good news is that causal consistency

10 James Hamilton, keynote talk at the 2nd ACM SIGOPS Workshop on Large-Scale
Distributed Systems and Middleware (LADIS), Big Sky, MT, September 2008.

11 One fascinating paper on this topic is “Coordination Avoidance in Database Systems”
by Peter Bailis and colleagues.

12 Another excellent paper by Pat Helland, in which he introduced the idea of ACID 2.0,
in “Building on Quicksand”.
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can be made both scalable and available (and is even proven® to be
the best we can do in an always-available system).

Causal consistency is usually implemented using logical time instead
of synchronized clocks. The use of wall-clock time (timestamps)
for state coordination is something that we should try to avoid
in distributed system design due to the problems of coordinating
clocks across nodes, clock skew, and so on. This is why it is often
better to rely on logical time, which gives you a stable notion of time
that you can trust even if nodes fail, messages drop, and so forth.
There are several good options available, such as vector clocks."
CRDTs, or event logging (see “Accept Uncertainty” on page 17).

Compose Sagas

Manage long-running business transactions with sagas.

At this point, you might be thinking, “But what about transactions? I
really need transactions!”

Let’s begin by making one thing clear: transactions are fine within
well-defined consistency boundaries (e.g., service, entity, or actor)
where we can, and should, guarantee strong consistency. This means
that it is fine to use transactional semantics within a single service.
We can achieve this in many ways: using a traditional SQL database,
a modern distributed SQL database, or event sourcing. What is prob-
lematic is expanding transactional semantics beyond the single service
as a way of trying to bridge data consistency across multiple services."

The problem with transactions is that their only purpose is to try
to maintain the illusion that the world consists of a single globally
strongly consistent present—a problem that is magnified exponen-
tially in distributed transactions (e.g., XA, two-phase commit, and
friends). We have already discussed this at length (see “Accept

13 That causal consistency is the strongest consistency that we can achieve in an always-
available system was proved by Mahajan and colleagues in their influential paper
“Consistency, Availability, and Convergence”.

14 For good discussions of vector clocks, see the articles “Why Vector Clocks Are Easy”
and “Why Vector Clocks Are Hard”.

15 The infamous, and far too common, antipattern “integrating over database” comes to
mind.
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Uncertainty” on page 17): it is simply not how the world works,
and computer science is no different.

As Pat Helland says, “Developers simply do not implement large
scalable applications assuming distributed transactions.”

If the traits of elasticity, scalability, and availability are not important
for the system you are building, go ahead and knock yourself out—
XA and two-phase commit are waiting. But if it matters, we need to
look elsewhere.

The saga pattern is a failure management pattern that is a commonly
used alternative to distributed transactions. It helps you to manage
long-running business transactions that make use of compensating
actions to manage inconsistencies (transaction failures).

The pattern was defined by Hector Garcia-Molina in 1987'¢ as a way
to shorten the period during which a database needs to take locks. It
was not created with distributed systems in mind, but it turns out to
work very well in a distributed context."”

The essence of the idea is that we can see one long-running dis-
tributed transaction as the composition of multiple quick local trans-
actional steps. Every transactional step is paired with a compensating
reversing action (reversing in terms of business semantics, not nec-
essarily resetting the state of the component) so that the entire
distributed transaction can be reversed upon failure by running
each step’s compensating action. Ideally, these steps should be com-
mutative so that they can be run in parallel.

The saga is usually conducted by a coordinator, a single centralized
finite-state machine (FSM), that needs to be made durable, prefera-
bly through event logging (see “Log Events” on page 51), to allow
replay on failure.

One of the benefits of this technique (see Figure 3-7) is that it
is eventually consistent and event based. It also works well with
decoupled and asynchronously communicating components, mak-
ing it a great fit for event-driven and message-driven architectures.

16 Originally defined in the paper “Sagas” by Hector Garcia-Molina and Kenneth Salem.
17 For an in-depth discussion, see Catie McAffery’s great talk on distributed sagas.
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The saga pattern is all about failure management.

saga saga
tx1,id=123 Saga tx1,id=123
tXZ, id=234 coordinator tXZ, id=234
tx3,id=345 1 tx3,id=345
saga
tx1,id=123
tx2,id=234
tx3,id=345
v v v
Transaction 1 Transaction 2 Transaction 3
| Commit \/’ | | Commit \/l | Commit \/l
| Compensate | | Compensate | | Compensate |

Success!

A saga knows all of the steps involved in a long-running transaction.

If failure is detected in one or more transactions of the saga...

saga saga
tx1,id=123 Saga tx1,id=123
tXZ, id=234 coordinator tXZ, id=234
tx3, id=345 I tx3,id=345
Sdgad
tx1,id=123
tx2,id=234
tx3,id=345
v
Transaction 1 Transaction 2 Transaction 3
| Commit \/’ | | Commit X | | Commit\/ |
| Compensate | | Compensate | | Compensate |

...all transactions can be undone using compensating actions.

Figure 3-7. Using sagas for failure management of long-running
distributed workflows across multiple services

The saga pattern is a great tool for ensuring atomicity in long-
running transactions. However, its important to understand that
it does not provide a solution for isolation. Concurrently executed
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sagas could potentially affect one another and cause errors. If this is
not acceptable, you need to use a different strategy, such as ensuring
that the saga does not span multiple consistency boundaries or
simply using a different pattern or tool for the job.

Guard Connections

Ensure graceful degradation.

Software components should be designed such that they can deny
service for any request or call. Then, if an underlying component
can say, “No, apps must be designed to take No for an answer and
decide how to proceed: give up, wait and retry, reduce fidelity, etc”

—George Candea and Armando Fox in “Recursive
Restartability”

We can’t bend the world to our will, so sometimes we find ourselves
at the mercy of another system such that, if it crashes or overloads
us with requests—and won't participate in backpressure protocols—
it will take us down with it.

The problem is that not all third-party services, external systems,
infrastructure tools, and databases will always play along and expose
asynchronous and nonblocking APIs or protocols. This can put us
in a dangerous situation in which we are forced to use blocking
protocols or run the risk of being overloaded with more data than
we can handle. If this happens, we need to protect ourselves in order
to manage potential failures or usage spikes gracefully.

It is paramount to be able to ensure the graceful degradation of a
component, protecting it from crashing and ensuring that it can
continue to provide service, even if it is a degraded level of service.

So how can we keep the response time under control? Little’s law can
be a useful tool for understanding queuing mechanics and how to
keep response time under control. It's a mathematical formula that
states that L = A x W or, refactored, W = L/\ (see Figure 3-8).
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« W = mean response time (time spent in the queue).
o L =mean queue length.

o \ = effective arrival rate.

A
W: response time L=AW

L: queue length >
Queue length = arrival rate x response time

Figure 3-8. Little’s law describes the relationship between request rate
and response time

Let’s say we want to keep the response time under a specific thresh-
old. We can’t control (but we can measure) the arrival rate. However,
we can control the queue length. Applying Little’s law, we can see
that by not allowing the queue to grow beyond a certain size, we
control the response time.

How can we control the queue length? There are many strategies.
We can:

o Drop messages, forcing the producer to retry, usually after a
timeout (e.g., load shedding).

o Block the producer or throw exceptions in the producer’s face
(if using synchronous blocking calls). It’s not recommended to

do both.

« Use flow control, balancing the arrival rate through negotiation
(e.g., backpressure; see “Coordinate Dataflow” on page 41).

Use the circuit breaker pattern (discussed later in this section).
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As mentioned previously, timeouts and retries are important build-
ing blocks on the path toward stable and reliable systems:

Timeouts

Timeouts are essential in distributed systems for handling
latency and failure. Since services often communicate over
networks, there’s always a possibility of delays or failures in
response. A timeout sets a predefined period for waiting on
a response; if no response arrives within this period, the sys-
tem assumes the request has failed. This prevents indefinite
waiting, enabling systems to recover by either logging errors,
failing gracefully, or triggering alternative workflows. Without
timeouts, a single stalled request can block resources and create
bottlenecks, leading to degraded performance or cascading fail-
ures across the system.

Retries

Retries help improve resilience by attempting failed requests
again, especially for transient issues like network glitches or
temporary server overloads. If a service fails to respond, a retry
mechanism can resend the request after a brief delay. This often
increases the chances of success without human intervention,
minimizing disruption. However, retries must be carefully man-
aged to avoid overwhelming services with repeated requests,
which could exacerbate the original issue. Common practices
include setting a maximum retry limit, implementing exponen-
tial backoff (increasing wait times between retries), and using
idempotent operations to ensure that duplicate requests don’t
result in inconsistent data.

A circuit breaker is an FSM, which means that it has a finite set of
states: closed, open, and half-open. The default state is closed, which
allows all requests to go through.

When a failure (or a specific number of failures) has been detected,
the circuit breaker “trips” and moves to an open state. In this state,
it does not let any requests through and instead fails fast to shield
the component from the failed service. Some implementations allow
you to register a fallback implementation to be used when in the
open state to allow for graceful degradation.
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After a timeout has occurred, there is a likelihood that the service is
back up again, so it attempts to “reset” itself and move to a half-open
state. Now, if the next request fails, it moves back to open and resets
the timeout. But, if it succeeds, things are back in business, and it
moves to the closed state, as demonstrated in Figure 3-9.

Circuit breakers act as a wrapper around external services.

Open Open = Prevent all osed
- requests to service, -
Service wait x seconds to Service
attempt reset.
Open Closed
Service Client Service

Closed Half-open

Service Service
Closed = Permit all traffic Half-open = Permit single
and monitor thresholds. Trip request, measure thresholds,
circuit if performance degrades close circuit if within bounds,
or failures detected. otherwise trip circuit.

When an external service is too slow or begins to fail,
acircuit breaker trips and prevents requests to that service...

Closed

Attempt reset

Half-open

...until the service heals. This prevents cascading
failures in a distributed system.

Figure 3-9. Circuit breakers can help improve the resilience of the
service
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Model with Actors

Model distribution, autonomy, bulkheading, mobility, and location
transparency with actors.

When Carl Hewitt invented the actor model®® in 1973, he was well
ahead of his time. Through the concept of actors, he defined a
computational model embracing nondeterminism, which assumes
all communication is asynchronous. Nondeterminism might sound
negative, but it’s actually quite positive. It enables concurrency,
which—together with the concept of long-lived stable addresses to
stateful isolated autonomous actors—allows actors to be decoupled in
time and space (see “Decouple in Time” on page 32 and “Decouple
in Space” on page 33). Thus, it supports service distribution, location
transparency (see “Leverage Location Transparency” on page 49), and

mobility.

Today, the world has caught up with Hewitt’s visionary thinking;
multicore processors, cloud and edge computing, Internet of Things
(IoT), and mobile devices are the norm. This has fundamentally
changed our industry, and the need for a solid foundation to
model concurrent and distributed processes is more significant than
ever. Actors provide the firm ground required to build complex
distributed systems that address today’s challenges in cloud and edge
computing. This is why I created Akka: to put the power of the actor
model into the hands of all developers."

The actor model is a computational model that combines three
things—processing, storage, and communication—in a single bulk-
headed, autonomous, mobile, and location-transparent unit.

Actors communicate through asynchronous message passing (see
“Go Async” on page 44). Each actor has a so-called “mailbox” (a local,
dedicated message queue), in which messages sent to the actor are
appended (and processed) in the order they arrive, and a serializable
and mobile reference (ActorRef in Akka or PID in Erlang), which is
decoupled from the underlying runtime instance (see Figure 3-10).
This decoupling means that the sender of a message doesn’t need to

18 If you are interested in understanding the actor model, then Gul Agha’s doctoral disserta-
tion is essential reading.

19 Akka’s introduction to the actor model, which explains how actors work and why it
matters, is a great introduction.
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know where an actor is currently located or if it’s even running at
the time (it might be recovering from failure, being updated, or being
relocated), allowing for true location transparency (see “Leverage
Location Transparency” on page 49).

An actor is single threaded, multiplexing on a thread pool, which
means that it naturally forms a consistency boundary, allowing one
to use mutable state safely within the actor without having to worry
about locks, race conditions, or deadlocks. We achieve concurrency
and parallelism by running many actors—actors always come in
systems. The decoupling of actors from the underlying hardware
resources means that they can be extremely lightweight (e.g., in
Akka, one can easily run millions of actors on a single GB of RAM).

Actors support three axioms. When an actor receives a message, it
can:

1. Create new actors.
2. Send a message to an actor it has the reference to.

3. Designate how it should handle the next message it receives.

The third axiom is an interesting one. It allows the actor to react
to outside stimuli and dynamically change its behavior at runtime,
which makes it easy to create finite-state machines driving dynamic
systems behavior.

Mailbox

Mailbox

Figure 3-10. A system of actors, communicating with asynchronous
messaging
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Actors are natural bulkheads (see “Embrace Failure” on page 22).
They are isolated and compartmentalized processes that run inde-
pendently and autonomously. If one actor fails, it does not affect any
other actor. Since actors communicate using asynchronous message
passing, there are no blocking calls, and as such, no risk of cascading
failures. As we have discussed earlier, failures are instead contained
and reified as messages, and they can be sent asynchronously to
whoever has registered interest. Thus, actors can supervise each
other (see “Supervise Subordinates” on page 68).

Actors are so powerful since they inherently embody most of the
principles and many of the patterns discussed in this guide, such
as asynchronous communication, location transparency, autonomy;,
decoupling in space and time, virtual addressing, localization of
state and processing, consistency boundary, isolated mutations,
bulkheading, single responsibility, mobility, decentralization, and
message-driven architecture.

Building on these foundational traits, we have in Akka been able
to layer higher-level patterns on top. These include replication,
sharding, cluster membership, leader election, flow control, stream
processing, event sourcing, CQRS, sagas, and more.

Supervise Subordinates

Build self-healing systems using supervisor hierarchies.

As discussed in “Embrace Failure” on page 22, if components are
bulkheads with asynchronous boundaries between them, and failures
are reified as messages that can be sent to notify interested or depen-
dent components about a particular failure, then one can build sys-
tems that heal themselves without external (human) intervention.

Supervisor hierarchies build upon this idea by formalizing it into
a general pattern for managing failure that has been used success-
fully in actor-based languages (like Erlang—which invented it*)
and platforms (like Akka). Supervisor hierarchies make applications

20 Joe Armstrong’s thesis “Making Reliable Distributed Systems in the Presence of Software
Errors” is essential reading on the subject. According to Armstrong, Mike Williams at
Ericsson Labs came up with the idea of “links” between processes as a way of monitoring
process health and life cycle, forming the foundation for process supervision.
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extremely resilient to failure by allowing you to build self-healing
systems.

Components are organized into supervisor hierarchies in which par-
ent components supervise and manage the life cycle of their subor-
dinate components. A subordinate never tries to manage its own
failure; it simply crashes on failure and delegates the failure manage-
ment to its parent by notifying it of the crash. This model embod-
ies the fail fast philosophy and is sometimes referred to as “let it
crash” or “crash-only software.”” The supervisor then can choose the
appropriate failure management strategy, e.g., resume or restart the
subordinate, delegate its work, or escalate the failure to its supervisor.

Figure 3-11 presents an example of a supervisor hierarchy.

-

=== Synchronous exception

(3) Failure
(Escalation)

(Notification)

L === Failure supervision

-
(1) Exception — Asynchronous event notification

Figure 3-11. A supervisor hierarchy tree of components

In this scenario, one child component fails by raising an exception.
The exception is captured by the component itself and reified as a
failure message that is sent asynchronously to its supervisor. Upon
reception of the message, the supervisor can decide what to do
with the failure. In this example, it decides that dealing with this
particular failure is beyond its responsibilities, so it escalates the
failure up the hierarchy by sending it to its supervisor. The top-level

21 A couple of great, and highly influential, papers on this topic are “Crash-Only Software”
and “Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel”, both by
George Candea and Armando Fox.
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supervisor now decides to restart the entire chain of failed compo-
nents by sending a restart command, recursively, bringing the whole
component hierarchy back to a healthy state, ready to take on new
tasks. This is self-healing in action.

With supervision hierarchies, we can design systems with autono-
mous components that watch out for one another and can recover
failures by restarting the failed component(s).

Paired with location transparency (see “Leverage Location Trans-
parency” on page 49)—given that failures are nothing but regular
events flowing between the components—we can scale out the fail-
ure management model across a cluster of nodes, regions, or clouds
while preserving the same semantics and simplicity of the program-
ming model.

To sum up, failures need to be:

+ Contained, avoiding cascading failures

o Reified, as immutable values (facts)

o Signaled, asynchronously

o Observed, by 1-N separate healthy components
o Managed, safely outside failed context

Lets take a vending machine as an example. Imagine we have a
vending machine and a customer eager for coffee. The customer can
insert a specific amount in coins and get a fresh brew of coffee. If
they haven't inserted enough coins, then the customer gets a notifi-
cation to put in more coins. When enough coins have been inserted,
the vending machine returns a cup of coffee (see Figure 3-12).

Inserts coins

Adds more coins Coffee
machine

Programmer

Gets coffee

Figure 3-12. Vending machine example: the happy path
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Now let’s say that the vending machine is out of coffee beans. It
could return an error message to the customer saying that it is out
of beans. But what should the customer do with that information? It
would be better if the vending machine could send this message to
the local service technician, who could come out and add more beans
(see Figure 3-13). This example is to illustrate a point: in practice, it
would of course be useful to let the customer know that the vending
machine is out of beans while communicating the problem to the
service guy. It’s important to define who is responsible for managing
the failure versus who (and this can be many entities) can benefit
from knowing that it has happened (and that it is being addressed).

Service guy

Adds
more
beans

Inserts coins

Out of coffee beans error Coffee

machine

Programmer

Wrong

Figure 3-13. Vending machine example: a failure scenario

The same model applies to software components (e.g., actors). Vali-
dation errors (such as “insert more coins” in the previous example)
should be sent to the user, since those are the user’s responsibility
and within the user’s control to address. But there is little value
in sending internal component errors to the user. If each error or
failure is reified as a message ready to be sent asynchronously, then
other components can subscribe to that message and be notified
when it occurs (see Figure 3-14).
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Supervisor

Manages

Application failure

error
Request

Validation error

Client Service

Response

Figure 3-14. Vending machine example: a failure scenario with a
failure notification to the supervisor

This allows the messages to be sent up in the hierarchy to the com-
ponent’s supervisor, or to any other interested or dependent compo-
nent, who is executing in a safe and separate runtime context. Fully
decoupled and isolated from the failed component, the supervisor can
take appropriate action (e.g., restarting or relocating the component).

Protect Critical Data

Always protect your critical data from failure and uncertainty.

Almost all failures in a distributed system relate to application state/
data in some shape or form. The list of what can go wrong with data
is a long one. Here are some examples:

Inconsistent data
Covered extensively in other sections.

Partial data
You have access only to some of the data you need to make a
decision.

Corrupted data
Data can get corrupted, either on the wire or on disk.

Lost data
Data can get lost, either on the wire or on disk.

Duplicated data
Retransmission of data after failure can cause data duplication.
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Let’s try to classify what we mean by data and their different kinds.

In their very insightful paper “Out of the Tar Pit”, Ben Mosely and
Peter Marks define state as two types of data:

Input data
This can be essential, since you have to refer to it in the future.
It can also be nonessential, only for temporal use, and can be
discarded. In the former case, this data is critical and needs to
be protected at all costs.

Derived data
This is not essential since it can always be derived from the
input data.

And two types of complexity:

Essential complexity
The data addresses the essence of the problem being addressed.

Accidental complexity
All the rest—this is complexity that we would not have to deal
with in the ideal world (e.g., complexity arising from infrastruc-
ture, performance, elasticity, resilience, etc.).

The paper goes on to define what the ideal system for managing
state, architected in three layers (see Figure 3-15):

Essential state
This is the foundation of the system and completely self-
contained. We put our essential input data here. It can make
no reference to any other part of the system.

Essential logic
This is the heart of the system. Often called “business logic,” it
depends on the essential state but nothing else. Changes in the
essential state can require changes in the essential logic.

Accidental state and control
This is the least important part of the system from a data per-
spective. Control is basically about the order in which things
happen. Changes here can never affect essential logic or essen-
tial state, but they can be affected by changes in the essential
state or essential logic.
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Essential logic

Accidental
state and

control \
Essential state

Figure 3-15. Protecting critical state by separating essential logic and
accidental logic

How can we put this into action? Leveraging supervisor hierarchies
(see “Supervise Subordinates” on page 68) gives us an opportunity
to create a hierarchy of dependency through which requests flow
and add protective layers between the services as a way to protect
our essential state from failure and uncertainty.

This pattern, called the error kernel pattern,” describes a design that
in some regards mimics the layers of an onion. Instead of having our
critical state scattered across the whole application, in different serv-
ices, we define the minimal error kernel that holds and manages our
essential state, that is, our critical “not recomputable” input data or
the data that we simply can not lose. Risky behavior is pushed out to
more distant layers in the hierarchy, the leaves of the process/service
tree. See Figure 3-16 for a schematic of such a design.

The error kernel never performs dangerous operations itself. It
never talks to external resources, never accepts user input directly,
etc. Instead, it always delegates these tasks to a subordinate pro-
cess/service. This means that whenever the error kernel is hit with a
message, we can assume correctness and safety.

The error kernel pattern builds upon many of the other patterns
we have discussed so far: partition state, communicate facts, iso-
late mutations, go async, bulkheads, detect failure, guard connec-
tions, model with actors, and supervise subordinates—all working
together in a beautiful orchestration.

22 I can’'t recommend enough that you read Roland Kuhn’s book Reactive Design Patterns.
It has such a breadth and depth of knowledge about building distributed systems, laid
out in a logical and practical way. It, for example, covers the error kernel pattern,
among many other patterns.
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Figure 3-16. The error kernel pattern

Detect Failure

Employ failure detection for more resilient systems.

As we have discussed, a distributed system is a system of discrete
parts, each functioning in isolation, bridged by an unreliable net-
work, and trying to function as a single system. Naturally, being able
to accurately detect failure to know whether the peer you are com-
municating with is down is extremely important. But the problem is
that there is no perfect failure detector.

Failure detection—first introduced in 1996 by Tushar Deepak Chan-
dra and Sam Toueg in their paper “Unreliable Failure Detectors for
Reliable Distributed Systems”—is almost like science mixed with art,
where we have to take educated guesses about whether the peer
process/node is down or if something else has caused the unrespon-
siveness. This is easier said than done. Here are a few examples of
what can go wrong even if the peer process stays healthy:
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o The request is dropped.

o The response is dropped.

o The request is not successfully executed.

o The request is queued up.

o The receiver is struggling with high load or garbage collection.

o The network is congested, causing a delay of the request or
response.

A failure detector needs to support two different properties, oper-
ating on two discrete axes: completeness and accuracy. Across this
spectrum we have:

Strong completeness
Every crashed process is eventually suspected by every correct
process— “everyone knows.”

Weak completeness
Every crashed process is eventually suspected by some correct
process— “someone knows.”

Strong accuracy
No correct process is suspected ever— “no false positives.”

Weak accuracy
Some correct process is never suspected— “some false positives.”

Ideally, we have strong completeness and strong accuracy. But, as
we have discussed previously, every guarantee has a cost. There are
many questions to answer and trade-offs to consider. For example,
how many false positives can you accept? Or how quickly do you
need to detect failures? Lower failure detection latency will cause
more false positives, for example, during a garbage collection pause.

In Akka, the heartbeat arrival times are interpreted by an implemen-
tation of “The Phi Accrual Failure Detector” by Naohiro Hayashibara
and colleagues, in which the suspicion level of failure is represented
by a value called phi. The basic idea is to express the value of phi
on a scale that is dynamically adjusted to reflect current network
conditions. It takes network hiccups into account by keeping a history
of heartbeat statistics and decouples the monitoring from the inter-
pretation. It can never definitively answer yes or no, but it provides
the likelihood—the phi value—that the process is down. The value
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of phi is calculated as phi = -logl0(1 - F(timeSinceLastHeartbeat)),
where F is the cumulative distribution function of a normal distri-
bution with mean and standard deviation estimated from historical
heartbeat inter-arrival times. See Figure 3-17 for a graph with phi
plotted against the time since heartbeat.

Heartbeat interval: 1,000 ms
Standard deviation: 200 ms
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Time since last heartbeat in ms

Figure 3-17. Phi versus heartbeat values as calculated by the phi
accrual failure detector

Another type of failure detector is discussed in the 2002 paper
“SWIM: Scalable Weakly-consistent Infection-style Process Group
Membership Protocol” by Abhinandan Das and colleagues. SWIM
separates cluster dissemination from heartbeats and introduces the
concept of a quarantine, where suspected nodes are put. After a
time, a grace period window can be marked as faulty. This hybrid
algorithm combines failure detection with group membership dis-
semination (see “Gossip for Convergence” on page 85 for a discus-
sion on group membership and gossip protocols). SWIM uses a
clever technique of delegated heartbeats to bridge network splits and
overcome the problem that occurs when network hiccups cause a
node to be unreachable from one node but potentially healthy and
reachable from others. The protocol (see Figure 3-18) works as
follows:
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1. Node N1 picks random member N2 - sends PING(N2).

2. Then either:
N2 replies with ACK(N2).
or

We get a timeout and then:

a. N1 sends PING(N2) to a set of random members RN.

b. Each RN sends PING(N2) to N2.

c. On receipt of ACK(N2), RN forwards it to N1.
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Figure 3-18. Delegated heartbeats in the SWIM failure detector

protocol

To summarize, failure detection is critical in distributed systems
because it ensures that the system can recognize and respond to
failed components, which is essential for maintaining reliability,
availability, and consistency. Without accurate failure detection, a
system may incorrectly treat a slow or unreachable component as
operational, leading to delays, resource lockups, or inconsistencies.
Effective failure detection enables the system to reroute requests,
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restart processes, or reallocate resources, minimizing downtime and
maintaining seamless functionality for users.

Replicate for Resilience

Replicate data for resilience, elasticity, and performance.

Replication® is the act of sharing data between multiple discrete
parties—services, nodes, data centers—while ensuring consistency
as a way to increase availability, resilience, and elasticity:

Synchronous versus asynchronous replication

We can replicate data synchronously, which means that we write
the data to the primary storage and the replica simultaneously,
in a strongly consistent manner. We can also choose to replicate
the data asynchronously—decoupling the act of writing to pri-
mary storage from the act of sending the data to the replicas.
This decoupling has a lot of advantages since it means that
we can leverage asynchronous I/O, asynchronous messaging,
batching of updates, and decoupling in space and time for better
availability, resilience, scalability, and elasticity.

Push-based versus pull-based replication

We can choose to perform the replication actively, by continu-
ously pushing data to the replicas as it is written to primary
storage. Or we can perform replication passively, with the repli-
cas pulling data at their own convenience. In passive replication,
data can be pulled not just from primary but also from the
peer replicas. Passive replication works well with, for example,
timeout-based caches.

Sharding is a database-partitioning technique that involves splitting a
large dataset into smaller, more manageable pieces, called shards (see
“Partition State” on page 37). These are distributed across multiple
servers. Each shard contains a subset of the total data and can operate
independently. This improves scalability and performance by distrib-
uting the load and allowing parallel processing. Sharding is often used
in distributed systems to handle vast amounts of data and traffic by
enabling horizontal scaling, whereby more servers can be added as
needed to manage the growing workload (so-called elasticity).

23 “A Primer on Database Replication” by Brian Storti is a good overview of (database)
replication.
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Let’s say we have a user dataset indexed by user name that we’ve shar-
ded across a set of four nodes, with the dataset partitioned into buck-
ets and each node holding a subset of the keyspace (see Figure 3-19).

Application

User [Adam]

Load balancer

Figure 3-19. Sharding data across multiple different replicas

To ensure redundancy, we can now replicate each partitioned data-
set to at least one of the other shard nodes, so that each node holds
its own dataset plus backup copies (replicas) of the other nodes’
datasets (see Figure 3-20).

Application

User [Adam]

Load balancer

User [A-C] User [D-F]
User [D-F] User [A-C]

Figure 3-20. Duplicating the sharded data in peer replicas for
redundancy
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There are different strategies we can use to replicate these datasets
between the replicas. Let’s now take a look at four of these strategies:

o Primary-replica (sometimes called active-passive) replication

o Primary-primary (sometimes called active-active or multi-master)
replication

o Buddy replication

o Quorum replication

The simplest strategy is to use primary-replica replication (see Fig-
ure 3-21). Here we have one node that is the primary node, serving
both reads and writes, and multiple (two or more) replica nodes,
serving only reads. The primary node is replicating each write to its
replica peers.

l Client } Reads/writes

Client
:
1
ICIientI Reads :
1
[}

Figure 3-21. Primary-replica replication
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Replication

Replica
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A bit more complex but more powerful is primary-primary replica-
tion. This is also called multi-master, which is probably a better term
since it hints at the fact that there can be any number of replicas, not
just two.

Here we have multiple primary nodes (two or more) that are all
serving both reads and writes concurrently (see Figure 3-22). These
primary nodes are always “hot,” meaning they have the latest data
aggregated from all the replicas. Replication is flowing bidirection-
ally between all replicas. The key here is to manage concurrent
updates that result in conflicts, that is, updates in which two or more
replicas are updating the same data record.
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In practice, there are many ways we can address this issue. Here are
some examples:

Last write wins
This is a simple, brute-force approach with potential data
loss, but it can be done automatically without help from the
application.

Storing tuples of both of the conflicting writes
This approach forces the client to reconcile the conflicts after-
ward (when reading the data), which leaks complexity to the
application.

Using CRDTs
This powerful and flexible approach uses automatic intelligent
merging that understands application semantics. It is guaran-
teed to converge in a consistent fashion but forces the applica-
tion to model the data as CRDTs, leaking complexity to the
application. This is the approach we have taken in Akka.

Primary

Figure 3-22. Primary-primary/multi-master replication

Another strategy is to use buddy replication, which allows you to
avoid replicating your data to all instances in a cluster. Instead, each
instance picks one or more “buddies” in the cluster and only repli-
cates to these buddies (see Figure 3-23). This strategy is often used in
gossip-based systems (see “Gossip for Convergence” on page 85).
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Figure 3-23. Buddy replication

Backup D |Replication| Backup C

Ideally, we dont want to replicate everything everywhere. That
would be both unnecessary and wasteful. The important thing is
to think through what guarantees we need for each dataset, noting
that these can vary between datasets in the same application (see
“Tailor Consistency” on page 27).

We can balance strong and eventual consistency** when replicating
data by working with three different parameters (using terminology
from David Gifford [1979]):

o N = the number of nodes that store replicas of the data.

o W = the number of replicas that need to acknowledge the
receipt of the update before the update completes.

o R = the number of replicas that are contacted when a data object
is accessed through a read operation.

Using these parameters, we now have the tools for working with a
spectrum of consistency guarantees:

« With W + R > N and W > N/2, we can guarantee strong
consistency.

o W+ R < N gives us eventual consistency. Note that the system is
vulnerable to reading from nodes that have not yet received the
updates (a problem that can be addressed with quorum reads,
discussed in the next section).

24 Make sure you read Werner Vogels’ article “Eventually Consistent—Revisited” for an
in-depth discussion of these topics.
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o W< (N + 1)/2 leaves open the possibility of conflicting writes if
the write sets do not overlap.

For some use cases, we don’t need to replicate everything to every
node in the cluster, as in primary-primary replication. Instead, we
can use quorum replication,” which means that a client update com-
pletes only after a quorum of copies has processed it successfully.
This can give more flexibility by allowing you to better balance
consistency guarantees with traits like availability, scalability, and
performance.

Ryan Barrett, in his talk “Transactions Across Datacenters”, gives
a great overview of the characteristics of different replication and
consensus strategies, as shown in Figure 3-24.

Primary/ Primary/ Two-phase Raft/

Backups replica primary commit Paxos
Consistency | Weak Eventual Strong
Transactions No Full | Local Full
Latency Low High

Throughput High Low | Medium
Dataloss Lots Some None
Failover | Down Read only | Read/write

Figure 3-24. Characteristics of different replication and consensus
strategies

Replication is key in decentralized systems and works hand in hand
with gossip protocols and architectures.

There are many other important questions to discuss related to
replication and data consistency (e.g., how to handle data inconsis-
tencies and temporary failures), but they are out of scope for this
guide. Here is a short list of links to more information about some
techniques that have proven useful:

25 A great paper on eventual consistency and consensus in distributed systems that
discusses quorum consensus is the 2013 paper “Rethinking Eventual Consistency” by
Philip A. Bernstein and Sudipto Das.
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+ Hinted handoff
o Strict and sloppy quorum
« Anti-entropy using Merkle trees

 Read repair

Gossip for Convergence

Use epidemic gossiping for elastic cluster membership and data
convergence.

We are moving inevitably toward increased decentralization. For
most companies, anchored in the cloud and needing to serve their
users more efficiently, this means relying less on centralized infra-
structure and moving toward decentralized peer-to-peer cloud or
cloud-to-edge systems.

Decentralized architecture that distributes logic and data together
(see “Localize State” on page 43) throughout a masterless peer-to-
peer mesh of nodes offers several advantages for managing data in
the cloud and at the edge:

Increased scalability
With a decentralized architecture, data and workloads can
be distributed across multiple nodes, servers, or locations.
This allows for more efficient scaling by adding or removing
resources as needed, without being limited by the constraints of
a centralized system.

Better resilience and high availability
Decentralized systems are designed to be resilient against single
points of failure. If one node or component fails, the system
can continue to operate without significant disruption as other
nodes can take over the workload. This ensures high availability
and minimizes downtime.

Better performance
Decentralized architectures can perform better by distributing
data and workloads across multiple nodes, reducing bottle-
necks, and leveraging parallel processing capabilities. This bene-
fits data-intensive workloads like big data analytics or AI and
machine learning applications.

Gossip for Convergence | 85


https://oreil.ly/dnNdS
https://oreil.ly/jNjPp
https://oreil.ly/4vwy6
https://oreil.ly/a8CZg

Improved data locality
In a decentralized architecture, data can be stored and processed
closer to where it’s generated or consumed. This can reduce
network latency and improve overall performance, especially for
large data transfers or in real-time data processing scenarios.

Enhanced security and data privacy
Decentralized architectures can help mitigate security risks by
distributing data across multiple nodes or locations. This makes
it more difficult for unauthorized parties to access or compro-
mise the entire dataset, as they would have to breach multiple
nodes simultaneously. It also helps to ensure that data is con-
tained in a geographic region (e.g., for compliance reasons).

Cost optimization
Decentralized architectures can help optimize data management
and processing costs by leveraging infrastructure resources
more efficiently and scaling resources dynamically.

Reduced risk for vendor lock-in
Decentralized architectures often rely on open source technol-
ogies, standardized interfaces, multi-cloud, and edge infrastruc-
ture. Thus, they reduce the risk of vendor lock-in and allow
for greater flexibility in choosing cloud providers or switching
between them.

Decentralized clustering involves multiple nodes working as a single
entity. By collaborating among themselves and sharing a single end-
point, they enable the elasticity and resilience of the service. The
question is: how can we make multiple nodes act as a single entity?

A key problem is how to disseminate information in a cluster, auto-
matically and seamlessly. Many systems rely on gossip protocols, or
epidemic protocols.* This class of decentralized communication pro-
tocols is used to efficiently spread information, achieve consensus, or
keep consistency among a large number of nodes. These protocols
mimic the way gossip spreads in social networks or viruses spread in
biological systems, with information spread randomly between pairs
of nodes over time until it reaches the whole network.

26 An interesting paper on how to efficiently implement gossip protocols is “Efficient Recon-
ciliation and Flow Control for Anti-Entropy Protocols” by Robbert van Renesse, Dan
Dumitriu, Valient Gough, and Chris Thomas.
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There are two classes of gossip: anti-entropy and rumor-mongering
protocols. Anti-entropy protocols gossip information until it is made
obsolete by newer information; they are useful for reliably sharing
information throughout a cluster of nodes. Rumor-mongering proto-
cols have participants gossip information for some amount of time
that is sufficient to ensure a high likelihood that all nodes in the
cluster have received the information. The key features of gossip
protocols are:

Decentralization
Gossip protocols do not rely on a central authority; every
node in the network has equal responsibility for propagating
information.

Scalability
Gossip protocols are highly scalable; by handling large numbers
of nodes efficiently due to their probabilistic nature, they ensure
that the load is evenly distributed.

Fault tolerance
Gossip protocols are robust against node failures, as the redun-
dant dissemination of information ensures that even if some
nodes fail, the information eventually reaches all nodes.

Convergence
Over time, gossip protocols ensure that all nodes in the network
reach a consensus or have consistent data, though exact guaran-
tees may depend on the specific implementation.

Gossip protocols make it straightforward to implement the
following:

Cluster membership®”
The membership information is gossiped, allowing nodes to
dynamically and seamlessly join and leave the cluster or become
temporarily unavailable, without disrupting the cluster. In
Alkka, we are using an optimized style of gossip called push/pull

gossip.

27 An insightful paper worth reading discussing cluster membership and failure detection
in gossip protocols is “SWIM: Scalable Weakly-consistent Infection-style Process
Group Membership Protocol” by Abhinandan Das, Indranil Gupta, and Ashish
Motivala.
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Failure detection
Heartbeat messages are gossiped®® at a predefined temporal
cadence, allowing anomalies to be detected (see “Detect Failure”
on page 75).

Leader election

Information about which node is considered the current leader
(or has a specific role) is gossiped. In Akka, this actually does
not happen through an “election” but is deterministically deci-
ded (the leader is simply the first node in a sorted node ring)
after so-called “cluster convergence” has occurred (convergence
can be defined as the arrival at local proof of a global state
in the past when locally a gossip is observed where all nodes
are represented in the “seen set”; see Akka documentation for
details).

Decentralized architecture is based on the idea that there are no
special nodes, no leaders or masters, but all nodes are equal and
communicate with each other in a peer-to-peer fashion. Peer-to-peer
systems are generally based on using a “semantic-free index,” which
means that each data item that is to be maintained by the system is
uniquely associated with a key that can be used as an index.

This allows the storing of key-value tuples. Each node in the cluster
is assigned an identifier from the same set of all possible hash values,
and each node is made responsible for storing data associated with
a specific subset of keys. Pairing this with an efficient function for
looking up each data item based on its key means that such a system
can be seen as implementing a distributed hash table (DHT).

The topology of such a system is crucial since each node can be
asked to look up a specific key and may need to, in the case of a
“lookup miss,” have an efficient way of routing the request to the
node holding the key and its data. The Chord® system was the first
to suggest such a solution, and it guarantees finding the data in
O(log(N)) jumps. It lays out all the nodes in the cluster logically in a
so-called “node ring” (see Figure 3-25).

28 See “A Gossip-Style Failure Detection Service” by Robbert van Renesse, Yaron Minsky,
and Mark Hayden.

29 See the 2001 paper on “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications” by Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari
Balakrishnan.
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Figure 3-25. Chord node membership ring—finding data in log(N)
jumps

Using these techniques, application data can be put in buckets and
sharded (see “Replicate for Resilience” on page 79) across all the
(currently) available nodes, allowing the cluster to be fully elastic
and responsive to changes in workload.

The most common technique to do this evenly and allow for
dynamic resizing of the cluster is consistent hashing.*® In this techni-
que, we evenly distribute K objects across N buckets (roughly about
K/N for each). When the number of buckets (N) changes, we don't
need to move/rebalance all objects but only K/N of them. To do this,
we use a base hash function, such as SHA-1. This gives minimal
disruption to managing the dataset when nodes join or leave the
cluster.

The output of the hash function hash(key) = P is a range 0...m - 1.
This represents our hash ring where:

o key = the bucket ID.

o P = the position on the hash ring.

 m = the total range of the hash ring.

30 Consistent hashing was first defined in “Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the World Wide Web” by David
Karger and colleagues.
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We hash the data buckets—the keys for the buckets—using the hash
function and distribute them out on the node ring based on the
output of the hash values. Then we also hash the incoming requests—
the extracted keys for the data buckets—using the same hash function
and distribute them out on the ring based on the hash.

To allow for availability and consistency, these data buckets also
need to be replicated to more than one node in the node ring. In
this way, if one or more nodes are lost, the system can still serve
requests by simply redirecting the request to one of the available
replica nodes. This can also allow for a higher level of consistency
guarantees (remember that we are gossiping the data throughout the
cluster in an eventually consistent fashion, see “Tailor Consistency”
on page 27) by always reading data from more than one replica and
ensuring consistency of the data before returning it to the user. Most
often, a quorum read based on a replication factor—usually an odd
number (e.g., 3, 5, or 7 nodes)—is used. See Figure 3-26.
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Figure 3-26. Data is spread out and duplicated in buckets across the
node/hash ring
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Gossiping can be inefficient if there are a large number of nodes in a
cluster. A couple of techniques that can be used to mitigate this prob-
lem are separation of failure detection heartbeat and dissemination of
data, as done in the SWIM protocol (discussed in “Detect Failure” on
page 75), and push/pull gossip, discussed in the 2003 paper “Push-Pull
Gossiping for Information Sharing in Peer-to-Peer Communities” by
Khambatti and colleagues. Push/pull gossip is, for example, used in
Alkka.

Many products and systems have used these techniques successfully
over the years, among others, Amazons Dynamo,* Apache Cassan-
dra, and Akka Cluster. For a high-level summary of how Akka
Cluster works, see “Akka Cluster Implementation Notes”. Among
other things, it uses Dynamo-style gossiping, biased gossip, push/
pull gossip, CRDTs for gossip state, and leader election.

Seek Consensus

Leverage consensus algorithms for coordination and consensus.

We have talked a lot about techniques and patterns for leveraging
the inherent nature of eventual and causal consistency for better
availability, scalability, and elasticity. But sometimes we have to
ensure consensus across discrete components in a strongly consis-
tent way. It’s time to discuss consensus algorithms.

In a fully asynchronous message-passing distributed system where
at least one process can fail, the 1985 classic Fischer, Lynch, and
Paterson (FLP) impossibility result proves that a deterministic con-
sensus algorithm is impossible. This result is based on worst-case
scheduling scenarios, which are rare in practice except in adversa-
rial cases like a targeted denial-of-service attack. Typically, process
scheduling involves some natural randomness.

31 The Dynamo paper is essential reading since it is packed with interesting concepts
and has inspired so many NoSQL databases: “Dynamo: Amazon’s Highly Available
Key-Value Store”.
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The FLP impossibility result shows that in a fully asynchronous dis-
tributed system with even one potential process failure, it’s impossi-
ble to guarantee that a deterministic consensus algorithm will always
terminate and reach a consensus. This impossibility arises because,
in such systems, unpredictable delays and failures can prevent pro-
cesses from ever agreeing, especially in worst-case scenarios.

What do we require from a consensus protocol? There are four
important properties that we care about:

Termination
Every process eventually decides on a value V.

Validity
If a process decides V, then V was proposed by some process.

Integrity
No process decides twice.

Agreement
No two correct processes decide differently.

Consensus algorithms like Paxos™ and Raft are designed with the
FLP result in mind. They acknowledge the impossibility of guar-
anteeing consensus in every possible scenario, especially under
the conditions described by FLP. However, these algorithms use
specific techniques to achieve consensus in practice, under typical
conditions where worst-case scenarios are rare. Other consensus
algorithms include the Zab* protocol used by Zookeeper and View-
stamped Replication,* which predates Paxos and is similar to Raft in
some regards.

We will now focus on Paxos and Raft since they are the most used
protocols in the industry today:

32 A good read on how Paxos works is the paper “Paxos Made Moderately Complex” by
Robbert Van Renesse and Deniz Altinbuken.

33 For details on Zab, read the 2008 paper “A Simple Totally Ordered Broadcast Protocol”
by Benjamin Reed and Flavio P. Junqueira.

34 For details on viewstamped replication, read the 1988 paper “Viewstamped Replication:
A New Primary Copy Method to Support Highly Available Distributed Systems” by
Brian M. Oki and Barbara H. Liskov.
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Paxos
Designed by Leslie Lamport, Paxos achieves consensus by
breaking the process into phases with quorum-based voting,
allowing it to make progress even if some processes fail or mes-
sages are delayed. While it doesn’t guarantee consensus in every
theoretical scenario (as per FLP), it works effectively under
most practical conditions.

Raft
Designed by Diego Ongaro and John Ousterhout, Raft simplifies

the consensus process compared to Paxos, making it easier to
understand and implement. It uses leader election, log replica-
tion, and a strong leader to coordinate decisions, helping to avoid
the complexities that arise from the FLP impossibility in practice.
Raft is designed to work efficiently in real-world distributed sys-
tems, even if it can’t overcome the FLP limit in every case.

There are two categories of consensus protocols:

Single-value consensus protocols
These focus on getting nodes to agree on a single value, often
encoding metadata such as a database transaction. Binary con-
sensus, a subset of this, limits the value to a binary choice {0,1}
and serves as a building block for more complex protocols.
Includes protocols such as Paxos.

Multivalued consensus protocols
These extend the concept of single-value consensus by agree-
ing on a sequence of values over time, creating a growing
history. While this could be done by repeatedly running single-
value consensus, multivalued protocols include optimizations
for greater efficiency and support for tasks like reconfiguration.
Includes protocols such as Multi-Paxos and Raft.

Let’s take a brief look at Raft since it is probably the simplest and
most popular consensus algorithm today. Raft operates in a cluster
of servers, where one server acts as the leader and the others as
followers. The leader is responsible for managing the replicated
log, which stores a sequence of commands that are applied to the
systemss state. Followers passively replicate the log entries from the
leader and only respond to its requests.
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The key components of Raft are:

Leader election

Raft begins with a leader election process. If a server doesn’t
receive communication from a current leader within a timeout
period, it assumes the leader has failed and starts an election by
becoming a candidate. The candidate requests votes from other
servers, and if it gains a majority, it becomes the new leader. This
process ensures that the system can quickly recover from leader
failures. See Figure 3-27 for an overview of the different steps for
leader election in the Raft protocol.

Log replication
Once a leader is elected, it starts accepting client requests. The
leader adds each new command to its log and then replicates
these entries to its followers. The leader waits for a majority
of followers to acknowledge the entry before considering it
committed. Once committed, the leader applies the entry to its
state machine and tells the followers to do the same.

Safety
Raft ensures that all servers eventually agree on the same log
entries in the same order, even if some servers crash and
recover. It achieves this by ensuring that leaders only commit
entries that are safely replicated to a majority of servers, pre-
venting any conflicting entries from becoming committed.

Times out,
- . new election
imes out, .
starts election - Receives votes from
Startsy, - majority of servers
D Follower [, "] Candidate Leader
A Discovers current
leader or new term

Discovers server with higher term

Figure 3-27. State-transition diagram for Raft leader election

Raft also supports dynamic reconfiguration, allowing the set of
servers in the cluster to change without disrupting the consensus
process. Additionally, Raft includes optimizations like log compac-
tion to improve performance over time, ensuring that the log doesn't
grow indefinitely.
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Both Paxos and Raft are examples of how consensus algorithms can
be designed to perform well in practice, despite the theoretical lim-
itations highlighted by the FLP result. They accept that consensus
might not be achievable in the worst case but still manage to achieve
it reliably in realistic scenarios.

Consensus protocols like Paxos and Raft are crucial in distributed
systems because they ensure consistency across multiple nodes, even
in the presence of failures. In a distributed system, nodes must agree
on decisions—such as updating shared state or completing a trans-
action—to avoid conflicts and ensure reliable operation. Consensus
protocols help nodes agree on a single source of truth, allowing
them to achieve consistency without centralized control.

Let’s look at a simple example. Imagine a distributed banking system
where several nodes process transactions. If two users simultane-
ously attempt to withdraw the last $100 from the same account
on different nodes, there must be a mechanism to prevent double
spending. A consensus protocol like Raft helps nodes reach agree-
ment on who gets the funds first by coordinating to finalize each
transaction’s order, ensuring that the account balance is updated
consistently across all nodes. Without consensus, the system risks
conflicting updates, leading to data inconsistencies.

Now that we have learned patterns that can help us build distributed
systems that leverage cloud and edge infrastructure in a natural and
optimal way, let’s take some time to discuss how we can design
applications, in particular event-driven and data-driven microser-
vices, that make use of these foundational principles and patterns.
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CHAPTER 4
Designing Distributed Applications

Now that we have delved into the principles and patterns of dis-
tributed application architecture, how can we best put them into
practice? Using event-driven architecture with microservices has
proven to be one of the best ways to translate business needs and
model the application domain in a way that is in line with how
distributed systems work, allowing applications to be ready for, and
make the most out of, the cloud and edge. Let’s now take some time
to discuss this in more detail.

Fundamental Principles of Microservices

Microservices have emerged as a powerful architectural pattern for
building cloud applications, offering numerous advantages in terms
of speed, efficiency, predictability, and safety. This approach has pro-
ven particularly effective in scaling organizations by allowing devel-
opers to decompose complex applications into discrete, decoupled
services that communicate via well-defined protocols. This decompo-
sition empowers individual teams to develop, deploy, and evolve their
microservices independently, fostering agility and innovation.

Moreover, when implemented correctly, microservices provide an
elegant solution to the challenges inherent in distributed systems. To
harness the full potential of this architecture, you should adhere to
five key principles:

o Isolation of components

» Autonomous operation
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« Single responsibility
o Exclusive state ownership

» Mobility with addressability

Let’s explore each of these principles in greater detail.

Isolation of Components

Isolation (see “Isolate Mutations” on page 40 and “Localize State” on
page 43) is the most important trait and the cornerstone of many
high-level benefits in microservices. This principle has the biggest
impact on your design and architecture. It will, and should, slice up
the entire architecture, so you need to consider it from day one.

Isolation even affects how you break up and organize teams and
their responsibilities. This relates to Melvin Conway’s 1967 discov-
ery, later named Conway’s law: “Any organization that designs a
system (defined broadly) will produce a design whose structure is a
copy of the organization’s communication structure.”

Isolation is fundamental to microservice design because it allows
each service to operate independently while reducing risk and com-
plexity at various levels of the system. Different elements can be
isolated:

Code isolation

Each microservice should have its codebase isolated to create a
boundary for state and logic. This isolation allows services to
function as “bulkheads” in the system (see “Embrace Failure”
on page 22 and “Isolate Mutations” on page 40); if one service
fails, it doesn’t bring down others. Code isolation also supports
Agile development practices, enabling teams to develop, debug,
and release each service independently, often through dedicated
continuous integration and continuous delivery (CI/CD) pipe-
lines tailored to the service’s unique requirements.

Packaging isolation with containers
Containers provide a consistent runtime environment that bun-
dles the code, dependencies, and configuration for each micro-
service, isolating each one from others at the operating system
level. Containers allow services to run independently, avoiding
conflicts in dependencies and environmental configurations.
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This also facilitates portability, making it easy to deploy services
in different environments without modification.

Compute isolation with pods
In systems like Kubernetes, pods are units of compute that encap-
sulate one or more containers. They help provide resource isola-
tion at the infrastructure level, ensuring each microservice has its
allocated CPU, memory, and network resources. This prevents a
resource-intensive service from starving others, which is particu-
larly important in large-scale, multi-tenant cloud environments.

API and event isolation

Microservices communicate through APIs or asynchronous
messaging (see “Go Async” on page 44), which provides a
clean separation between the service’s internal workings and its
external interactions. By isolating inputs and outputs, services
are more resilient to changes and failures; they can gracefully
handle issues like timeouts or retries without leaking problems
back to the client (see “Guard Connections” on page 62). This
isolation is key for supporting patterns like eventual consistency
(see “Tailor Consistency” on page 27), which is essential in
distributed systems.

Database isolation
Isolating databases, by ensuring a separate database per service,
prevents services from inadvertently affecting each other’s data.
This reduces the risk of data corruption and makes it easier to
manage schema changes without impacting other services. Each
service can also choose the storage mechanism that best fits its
requirements, enhancing flexibility and performance.

Operational and failure isolation

Isolation at the operational level includes metrics, logging, and
monitoring, all scoped to individual services (see “Observe
Dynamics” on page 47). This separation makes it easier to
detect and troubleshoot issues since failures or slowdowns are
confined within a single service. Furthermore, isolating fault
domains through circuit breakers (see “Guard Connections”
on page 62) and load balancing (see “Replicate for Resilience”
on page 79) ensures that issues in one service dont cascade
throughout the system, enhancing system resilience.
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By enforcing isolation across these dimensions, microservices can
evolve independently, scale as needed, and reduce the risk of system-
wide failures. This separation ultimately allows cloud applications to
be more agile, resilient, and elastic.

Autonomous Operation

Isolation is a prerequisite for autonomy (see “Assert Autonomy” on
page 25). Only when services are truly isolated can they achieve
full autonomy, making decisions independently, acting on their own,
and cooperating with other services to solve problems.

Mark Burgess captures this concept well in his work on promise
theory: “With a promise model, and a network of autonomous
systems, each agent is only concerned with assertions about its own
policy; no external agent can tell it what to do, without its consent.”!

Working with autonomous services provides flexibility in several
areas: service orchestration, workflow management, collaborative
behavior, scalability, availability, and runtime management. How-
ever, this flexibility comes at the cost of requiring more thoughtful
design of well-defined and composable APIs.

Autonomy extends beyond just system architecture and design. A
system built with autonomous services allows the teams develop-
ing these services to maintain their own autonomy. They can roll
out new services and features independently, fostering agility and
innovation.

Ultimately, autonomy serves as the foundation for scaling both
the system and the development organization behind it. It enables
growth and adaptability at both the technical and organizational
levels.

Single Responsibility

The Unix philosophy* and design, despite their age, remain highly
effective and relevant. One of the core tenets is that develop-
ers should create programs with a single, well-defined purpose.

1 Paul Borrill, Mark Burgess, Todd Craw, and Mike Dvorkin, “A Promise Theory Per-
spective on Data Networks”, 2014.

2 The Unix philosophy is described really well in the classic book The Art of Unix
Programming by Eric Steven Raymond.
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These programs should be designed to work seamlessly with other
small programs through good composition.

This concept was later introduced to the object-oriented program-
ming community by software engineer Robert C. Martin, who
termed it the single responsibility principle (SRP).? SRP states that a
class or component should “have only one reason to change”

Much debate has centered around the ideal size of a microservice.
Questions like “What qualifies as ‘micro’?” or “How many lines of
code can a microservice have?” miss the point. Instead, micro should
refer to the scope of responsibility. The guiding principle here is that
of the Unix philosophy and SRP: a service should do one thing and do
it well.

When a service has a single reason to exist, providing a single
composable piece of functionality, it prevents the entanglement of
business domains and responsibilities. This approach makes each
service more generally useful, and the overall system becomes easier
to scale, more resilient, simpler to understand, and easier to extend
and maintain.

As an example, let’s take a look at the design in Figure 4-1. Here
we have a simple ordering system with three services: orders, pay-
ment, and inventory, each providing a single well-defined piece of
functionality while working together. The services are encapsulated
by bounded contexts,* which establish clear boundaries for services.
A bounded context acts as a complexity bulkhead, keeping unnec-
essary complexity from leaking out while maintaining a unified
domain model and language within.

3 For an in-depth discussion of the single responsibility principle, see Robert C. Martin’s
website “The Principles of OOD [Object-Oriented Design]”.

4 For an in-depth discussion of how to design and use bounded contexts, read Vaughn
Vernon’s book Implementing Domain-Driven Design (Upper Saddle River, NJ: Addison-
Wesley, 2013).
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Figure 4-1. An ordering system comprised of three services that each
provide a single well-defined piece of functionality

Exclusive State Ownership

Up to this point, we've characterized microservices as a set of iso-
lated services, each with a single area of responsibility. This frame-
work allows us to treat each service as an independent unit that can
live, die, and move in isolation—a crucial factor for both resilience
and elasticity. Elasticity here refers to a system’s ability to adapt to
changing input rates by adjusting the resources allocated to handle
these inputs.

While this sounds promising, we must address a critical factor: state.

Microservices are typically stateful components, encapsulating both
state and behavior. Importantly, the principle of isolation extends
to state as well, necessitating that we treat state and behavior as a
unified entity.

Services need to own their state exclusively (see “Partition State” on
page 37). This simple fact has profound implications. It means that
data can only be strongly consistent within each service, not between
services. For interservice data consistency, we must rely on eventual
consistency and forgo traditional transactional semantics.

This approach requires abandoning the concept of a single, all-
encompassing database. It means moving away from fully normal-
ized data and cross-service joins (as illustrated in Figure 4-2). We're
entering a different paradigm that demands a new way of thinking,
along with different designs and tools. We'll explore these concepts
in greater depth later.
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Figure 4-2. A monolith disguised as a set of microservices

Mobility with Addressability

With cloud computing, virtualization, and Docker containers, we
have powerful tools to manage hardware resources efficiently. How-
ever, these benefits are lost if our microservices and underlying
platforms are locked into a fixed topology or deployment setup.
What we need are mobile services that allow the system to be elastic
and adapt dynamically to usage patterns.
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Mobility means you can move services around during runtime, and
pairing mobility with location transparency (see “Leverage Location
Transparency” on page 49) ensures they remain agnostic to the
system’s current deployment or topology—both of which should
be able to change dynamically. Mobility also allows services to be
moved or reallocated without disrupting their functionality or client
interactions. Here are some examples of situations in which this is
essential:

Scaling and load balancing

When a service experiences high demand, new instances may
be deployed dynamically across different nodes or even differ-
ent regions. For example, during a seasonal sales event, an
ecommerce application might scale its checkout and inventory
services. Location transparency enables load balancers or ser-
vice discovery mechanisms to redirect traffic seamlessly to the
new instances without the client needing to know their specific
locations.

Failover and disaster recovery

In the event of node failure, services might need to be relocated
to another server or data center. A location-transparent service
can be restarted on a different node, and peer services or clients
can reconnect without awareness of the shift. For instance, a
banking application might rely on disaster recovery to reroute
requests to a backup instance of a critical service in another
region during a regional outage.

Edge computing and proximity optimization

Sometimes, services are moved closer to the data source or the
user to reduce latency. For example, in city traffic monitoring,
services may need to migrate between edge nodes to handle
local load spikes or failures while maintaining low-latency, real-
time data for emergency response. Location transparency ena-
bles seamless access to this data, ensuring uninterrupted service
despite node mobility.

Cluster maintenance and upgrades

Routine maintenance or infrastructure upgrades often require
services to be moved. A Kubernetes cluster, for example, might
reschedule pods onto different nodes to apply updates. Here,
location transparency ensures that service consumers don’t
experience disruption.
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Cost optimization
Cloud providers often move workloads dynamically to opti-
mize resource usage across regions or availability zones (AZs).
Mobile and location-transparent services can be moved to
cheaper instances or regions automatically, which can reduce
costs in the long run.

In all these cases, mobility and location transparency ensure that
clients and other services don’t have to be updated with each change
in service location, making the system more resilient, more cost-
effective, and easier to manage at scale.

Now that we've outlined the five key traits of a microservice, we can
begin to dismantle the monolith and apply these traits in practice.

Slaying the Monolith

Before tackling the task of “slaying the monolith,” it's important to
understand why this architecture is problematic and why a shift to
decoupled microservices is necessary.

Consider a monolithic Java application with a typical three-tier
architecture, using technologies like servlets, EJB, Java Persistence
API (JPA), and a SQL database (or the Spring Framework for a
modern version). Figure 4-3 depicts such an application.

Application server

Monolith

Servlets

Search Cart Orders Inventory Payment

Figure 4-3. A monolithic application with a classic three-tier
architecture
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The issue with this design is that it creates strong coupling between
components within each service and across services. Complex work-
flows driven by deep synchronous call chains entangle services,
making the system difficult to understand and preventing services
from evolving independently. Each service holds the caller hostage
until all methods execute, creating rigid dependencies.

This tight coupling means that you must upgrade all services
together, and failures are hard to isolate. A failure in one service
can cascade through the tiers, potentially bringing down the entire
application. Exception handling through “try-catch” statements is a
blunt tool that further complicates failure management. Moreover,
the lack of service isolation makes it impossible to scale individual
services; even if only one service experiences high traffic, you must
scale the entire monolith, leading to inefficiency.

Traditional application servers reinforce this monolithic approach,
bundling the services and deploying them into a single instance.
The application server then manages the service “isolation” through
class loader magic. This fragile model forces services to compete
for resources like CPU, memory, and storage, reducing fairness and
system stability.

When refactoring a monolith into a microservices-based system,
many developers take the path of least resistance—using scaffolding
tools, containers, and synchronous APIs. This often results in an
architecture like the one in Figure 4-4, where services are single
instance, communicate over synchronous RPC, and rely on CRUD
operations through JPA with a SQL database (sometimes still a
monolithic, shared one). What’s been created is what I call micro-
liths—essentially small monoliths.
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Avoid Microliths

Microlith Microlith Microlith

Single Single
instance instance

JPA JPA

Sync &blocking Sync & blocking Sync & blocking
DB access DB access DB access

Figure 4-4. A system of microliths communicating over synchronous
protocols

A microlith is a single-instance service that replaces synchronous
method calls with synchronous and blocking RPC, while still using
blocking database access. This preserves the strong coupling of the
original monolith but introduces the added overhead of synchro-
nous network calls, increasing latency. Since each service is a sin-
gle instance, it inherently lacks scalability and availability. A single
instance can’t scale out or stay available if it fails.

Some might assume that using Docker or Linux (LXC) containers
solves this, but merely packaging microservices into containers
doesn’t address the core issues. Containers, and orchestration tools
like Kubernetes, are excellent for managing and scaling instances,
but they don’t solve the fundamental challenges of distributed sys-
tems (as discussed in Chapter 1).

As we have discussed throughout this guide, real complexity lies in
the space in between services—in areas like communication, coordi-
nation, consistency, and managing shared state and resources. These
are intrinsic to the design of the application itself and can't be easily
added afterward.
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Microservices Come in Systems

“One actor is no actor. Actors come in systems.” This wise statement
is often attributed to Carl Hewitt, creator of the actor model. The
same applies to microservices: “One microservice is no microser-
vice. Microservices come in systems.”

Like humans, microservices are autonomous and must communi-
cate and collaborate with others to solve problems. It’s in this col-
laboration where the most interesting opportunities and toughest
challenges arise.

The real difficulty in microservices design isn't in building the indi-
vidual services—it’'s managing the space in between them. Designing
effective microservice systems requires a deep understanding of
how services interact, coordinate, and share responsibilities to work
together seamlessly.

We are forced to embrace uncertainty, failure, autonomy, decou-
pling, asynchronous messaging, and data partitioning and be ready
to give up some of the consistency guarantees, as we have dis-
cussed in this guide. One of the best ways to design this new
class of applications is through event-driven architecture (EDA) and
domain-driven design (DDD), in particular events-first domain-
driven design, which we will discuss next.

Events-First Domain-Driven Design

The term events-first domain-driven design, coined by software
developer Russell Miles, refers to a set of design principles that focus
on building scalable distributed systems. Rather than centering on
domain objects (nouns), this approach emphasizes the events (verbs)
within the domain.

Shifting the focus to events offers a clearer understanding of the
domain’s dataflow and communication patterns. This perspective
helps capture the essence of the domain and naturally leads to
scalable, event-driven architectures, which are well-suited for dis-
tributed systems at scale.
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Focus on the Behavior of the System

Object-oriented programming (OOP) and DDD traditionally start
by focusing on the things—the nouns—in the domain as a way of
finding the domain objects. They then build up the design from
there. The problem is that this approach has a major flaw: it forces
us to focus on structure too early.

Instead, we should focus on the events—the verbs in the domain.
This shift helps us understand how changes propagate, including
communication patterns, workflows, and data ownership. By model-
ing the domain through events, we can better grasp how different
components interact and who is responsible for what.

As Greg Young, the creator of CQRS (see “Untangle Reads and
Writes” on page 54), says: “When you start modeling events, it
forces you to think about the behavior of the system, as opposed to
thinking about structure inside the system.”

Focusing on events introduces a temporal dimension, making time a
critical element in system design. Understanding the causal relation-
ships between events is especially valuable in distributed systems,
where managing time and change is crucial for reliable operation.

Use Commands for Intent and Events for Facts

Commands express an intent to perform an action, often resulting in
side effects, such as changing internal state, triggering processes, or
sending more commands.

Events represent facts about the domain and should be a key part of
the ubiquitous language, helping to define the bounded context and
establishing a clear boundary for the service. Facts represent things
that have happened in the past and are immutable, or as defined by
Merriam-Webster: “an actual occurrence; something that has actual
existence”:

Facts are immutable.
They can’t be changed or be retracted. We can’t change the past,
even if we sometimes wish that we could.

Knowledge is cumulative.
This occurs either by receiving new facts or by deriving new
facts from existing facts.
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Existing knowledge can be invalidated.
This is done by adding new facts to the system that refute exist-
ing facts. Facts are not deleted, only made irrelevant to current
knowledge.

Thus, commands and events serve distinct roles in a system, and
they differ in semantics, behavior, and purpose. Table 4-1 breaks it
down.

Table 4-1. The differences between commands and events

Commands Events

All about intent Intentless
Directed (sender to receiver) Anonymous (no address)

Clear single destination (retaining server  Just happens for others (0—N) to observe
address)

Mimics a conversation (personal one-to-  Mimics broadcast (“speaker’s corner”; does not care

one direct communication) who is listening)

Distributed focus (moves across address Local focus (no notion of communication, network, or

spaces) addresses; events need to be wrapped in messages to
travel address spaces)

Command and control Autonomy

As we can see, in event-driven design, events are immutable facts
published for anyone who is interested (can be zero or many), while
commands express an intent to trigger actions or state changes
in some other component. Events and commands serve different
roles, with events representing what has happened and commands
initiating future actions.

Understand Causality by Mining the Facts

You should carefully mine the facts to uncover causal relationships,
as these are crucial for understanding the domain and the system
itself. To model causality, a centralized approach is event logging
(see “Log Events” on page 51), while decentralized methods utilize
vector clocks or CRDTs (see “Accept Uncertainty” on page 17).

The technique of event storming® facilitates this process by gathering
all stakeholders—domain experts and programmers—into a single

5 An in-depth discussion of event storming is beyond the scope of this guide, but a good
starting point is Alberto Brandolini’s book Event Storming.
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room to brainstorm using sticky notes. They work together to define
the domain language for events and commands, exploring the causal
relationships and understanding the reactions.

The process involves three key steps:

1. Explore the domain by examining what happens in the system to
identify events and their causal connections.

2. Identify the triggers for these events, which often result from the
execution of commands, including user interactions, requests
from other services, and inputs from external systems.

3. Determine the endpoints for commands, which are typically
received by a component that decides whether to execute the
side effects, potentially creating events that introduce new facts
into the system.

This structured approach enables a clear understanding of the
domain, revealing the flow of commands and events, and now
directs our attention to the components (the entities, discussed in
“Model Consistency Boundaries with Entities” on page 113), where
these events culminate—our source of truth.

I find it helpful to design with comsistency boundaries® in mind for
services by following these steps:

1. Avoid starting with the service’s behavior; instead, focus on
the underlying data—what the facts are—and consider their
coupling and dependencies.

2. Identify and model the integrity constraints that need to be
upheld, gathering insights from domain experts and stakehold-
ers throughout the process.

3. Start with zero guarantees on the smallest possible dataset, grad-
ually incorporating the minimal level of guarantees needed to
resolve your issue while keeping the dataset size small.

4. Use the single responsibility principle as a guiding concept.

6 Pat Helland’s paper “Data on the Outside Versus Data on the Inside” talks about guide-
lines for designing consistency boundaries. It is essential reading for anyone building
microservices-based systems.
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The objective is to minimize the dataset that requires strong consis-
tency. Once you have defined the essential dataset for the service,
you can then address the behavior and protocols for interacting with
other services, thereby establishing your unit of consistency.

Localize Mutable State and Publish Facts

The assignment statement is the von Neumann bottleneck of pro-
gramming languages and keeps us thinking in word-at-a-time
terms in much the same way the computer’s bottleneck does.

—John Backus (Turing Award lecture, 1977)

After this extensive discussion of events and immutable facts, you
may question whether mutable state has any role to play at all.

While mutable state—typically represented as variables—can be
problematic, it's important to recognize its nuances. One issue is
that the assignment statement, as highlighted by John Backus in
his Turing Award lecture, is a destructive operation that overwrites
previous data, effectively resetting time and history repeatedly.

The essence of the problem (as discussed in “Communicate Facts”
on page 38) is that—as Rich Hickey, the inventor of the Clojure pro-
gramming language, has discussed—most object-oriented computer
languages (like Java, C++, and C#) treat the concepts of value and
identity as the same thing, which means that an identity can't be
allowed to evolve without changing the value it currently represents.

Functional languages such as Scala, Haskell, and OCaml, which
employ pure functions with immutable data, provide a robust
framework for reasoning about programs, allowing for stable values
that remain unchanged during observation.

However, this does not imply that all mutable state is inherently
bad. It just needs to be contained, meaning that you should use
mutable states only for local computations, within the safe haven
that the service instance represents, completely unobservable by the
rest of the world. When you are done with the local processing and
are ready to tell the world about your results, you then create an
immutable fact representing the result and publish it to the world
(as discussed in “Isolate Mutations” on page 40).
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This approach allows others to rely on stable values for reasoning
while still reaping the benefits of mutability, such as simplicity and
algorithmic efficiency.

All these principles, patterns, and tools can be overwhelming to
think about from first principles and put in practice. We need
higher-level abstractions and guardrails to keep us on the right
path. An event-based approach, for example, relying on entities
and event sourcing (see “Log Events” on page 51), can naturally
guide us toward adopting the best architecture and making the right
trade-ofts.

Model Consistency Boundaries with Entities

The consistency boundary (see “Isolate Mutations” on page 40)
defines both a unit of consistency and a unit of failure (see
“Embrace Failure” on page 22), ensuring that updates, relocations,
and failures occur atomically. When transitioning from a monolith
with a single database schema, it’s essential to apply denormalization
techniques to split the schema into multiple, manageable ones (see
“Partition State” on page 37).

Each unit of consistency should be treated as an entity, and entities
should reference one another by identity (see “Model with Actors”
on page 66) rather than with direct references. This practice main-
tains isolation, reduces memory consumption by avoiding eager
loading, and facilitates location transparency (see “Leverage Loca-
tion Transparency” on page 49).

Entities that dont reference one another directly can be reparti-
tioned and moved around in the cluster for almost infinite scalabil-
ity, as outlined by Pat Helland in his influential paper “Life Beyond
Distributed Transactions”.

Outside the entity’s consistency boundary, eventual consistency is
necessary. A good question to ask is: “Who is responsible for ensur-
ing data consistency?” If the responsibility lies with the service
executing the business logic, it should be confined to a single entity
to guarantee strong consistency; otherwise, eventual consistency is
acceptable.

7 You can find a good summary of the design principles in “7 Design Patterns for
Almost-Infinite Scalability”.
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Suppose that we need to understand how an order management
system works. After a successful event-storming session, we might
end up with the following (drastically simplified) design:

o Commands: CreateOrder, SubmitPayment, ReserveProducts,
ShipProducts

e Events: OrderCreated, ProductsReserved, PaymentApproved,
PaymentDeclined, ProductsShipped

o Entities: Orders, Payments, Inventory
Figure 4-5 presents the flow of commands between a client and the

services/entities (a dotted-line arrow indicates that the command or
event was sent asynchronously).

[ Client ] [ Orders } [Inventory] [Payments]
CreateOrder
ReserveProducts
SubmitPayment R
ShipProducts
>
<Confirmation>_
[ Client ] [ Orders ] [Inventory] [Payments]

Figure 4-5. The flow of commands in an example order management
use case

If we add the events to the picture, it looks something like the flow
of commands shown in Figure 4-6.
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[ Client ] [ Orders ] [Inventory] [Payments]
CreateOrder
ReserveProducts
ProductsReserved|
SubmitPayment o
PR B PaymentApproved
ShipProducts |
Productsshipped |
¢ <Confirmation>_ |
[ Client ] [ Orders ] [Inventory] [Payments]

Figure 4-6. The flow of commands and events in an example order
management use case

Let’s now zoom in on the payments service and how it interacts with
the orders service. Figure 4-7 (that you might remember from “Log
Events” on page 51) illustrates the flow of the commands and events
in the interaction between these services. It also shows how event
sourcing and CQRS come into play (see “Log Events” on page 51
and “Untangle Reads and Writes” on page 54).

The process begins with a command (SubmitPayment) sent to the
payments service from an external “user” of the service, namely
orders. This command crosses the boundary of the bounded con-
text for the service and is received by the processing layer, where
it undergoes validation and translation before the business logic
is executed. Following this, a new command (ApprovePayment) is
created, representing the intent to change the service’s state, and sent
to the service’s entity. The entity then processes the command, gen-
erating an event (PaymentApproved) that signifies the state change
and storing it in its event log. Once the event is successfully saved,
it is pushed to the event stream for public consumption, where it is
forwarded to its subscribers, which include the orders service and
the payment query database (the CQRS “read side”).
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Figure 4-7. A simple ordering system using event sourcing and CQRS

This design enhances scalability, resilience, and consistency, allow-
ing services to resume processing after failures or replay portions of
the event stream if needed.

Allow for Protocol Evolution

A protocol defines the rules and etiquette for exchanging messages
between components. It outlines the relationships between partic-
ipants, the current state of the protocol, and the set of allowed
messages at any time, essentially specifying which messages one
participant can send to another at each step.

Protocols can be categorized by the type of interaction, such
as request-reply, repeated request-reply (like HTTP), publish-sub-
scribe, and streaming (both push and pull). Unlike a local program-
ming interface, a protocol is more flexible, supporting multiple
participants and tracking the ongoing state of the exchange, rather
than just one-time interactions. Note that a protocol only defines
which messages can be sent, while encoding/decoding (codecs) and
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transport are implementation details independent of the protocol
itself.

Individual microservices remain independent and decoupled only
when they can evolve autonomously, necessitating that their proto-
cols (e.g., defined through HTTP APIs, RPC, events published or
subscribed to, etc.) be resilient to and permissive of change. This
includes handling events and commands, persistently stored data,
and the exchange of ephemeral information such as session states,
authentication credentials, and cached data. Ensuring interoperabil-
ity between different versions is essential for the effective long-term
management of complex service ecosystems.

Postel’s law,® also known as the robustness principle, states that you
should “be conservative in what you do, be liberal in what you
accept from others,” making it a valuable guideline for API design
and evolution in collaborative services.’

Challenges in managing microservices include the versioning
of protocols and data—specifically events and commands—and
addressing how to handle upgrades and downgrades effectively. This
complex problem encompasses several key tasks:

o Selecting extensible codecs for serialization
o Ensuring that incoming commands are valid

o Maintaining a translation layer for protocols and data, which
may require upgrading or downgrading events or commands to
align with the current version

o Versioning of the service itself"

To effectively handle these tasks, implementing an anti-corruption
layer is advisable. This layer can be integrated into the service or
managed through an API gateway, serving to protect the bounded
context from changes in other contexts while allowing both to
evolve independently.

8 Originally stated by Jon Postel in RFC 761 on TCP in 1980.
9 It has, among other things, influenced the tolerant reader pattern.

10 There is a semantic difference between a service that is truly new and a new version of
an existing service.
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Congratulations on making it this far. Hopefully now you have
a good understanding of the principles and patterns that are the
foundation for solid distributed-system architecture and design, as
well as how to leverage microservices and event-driven design to put
them into practice building cloud and edge applications.

Conclusion

We have covered a lot of ground in this guide, yet have just
scratched the surface of some of the topics. I hope what you have
read has inspired you to learn more and to roll up your sleeves and
try these ideas out in practice.

Learning from past failures and successes™ in distributed systems
and collaborative services-based architectures is paramount. Thanks
to books and papers, we don’t need to start from scratch but can learn
from other people’s successes, failures, mistakes, and experiences.

There are a lot of references (in hyperlinks and footnotes) through-
out this guide, and I very much encourage you to read them all.

11 The failures of SOA, CORBA, EJB, and synchronous RPC are well worth studying and
understanding.

12 Successful platforms with tons of great design ideas and architectural patterns have so
much to teach us—for example, Tandem Computer’s NonStop platform, the Erlang
platform, and the BitTorrent protocol.
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