
Architect’s Guide
to 99.9999%
Application Availability
How to reduce the cost and
complexity of delivering always-on
business-critical applications.

WHITE PAPER

Executive summary
Business resilience has never been more
important, and application resilience is
fundamental to it. A lack of application
resilience often puts a halt to business and
operations. Downtime causes lost revenue,
reputational damage, and regulatory penalties.
However, meeting six nines of availability
(99.9999%) is challenging and expensive for
modern, mission-critical applications.

Traditional approaches demand costly, complex
infrastructure changes; most clouds only
guarantee up to 99.99% uptime, leaving app
owners responsible for higher levels of resilience.
Akka apps incorporate additional nines of
availability without triggering an architecture
rethink or order-of-magnitude cost increase.

Akka’s simplified path to six nines

• Multi-region resilience: Run your apps with
active-active data replication across multiple
regions or clouds. If one region fails, others
remain functional.

• Built-in data replication: Using CRDTs, Akka
automatically handles data convergence,
avoiding high-latency global transactions.

• No app database required: Applications serve
as their own in-memory, durable database,
reducing the licensing and infrastructure
overhead of distributed SQL.

• Redundant infrastructure: Each Akka region
has identical infrastructure which delivers
redundancy. Each region is identical, mirroring
upgrades, patches, and maintenance.

• Proven track record: In 15+ years, Akka has
never experienced a Sev1 incident causing
data loss, and it indemnifies against reliability-
related losses.

Key business benefits

• Reduced complexity: Application-layer
resilience replaces heavy reliance on costly
infrastructure redundancy.

• No-downtime updates: Rolling upgrades and
event-driven operations enable continuous
delivery without service interruption.

• Vendor leverage: Multi-cloud deployment
prevents lock-in, improving flexibility and
negotiation power.

Next steps

• Get started: Visit Akka.io to get started
at no cost.

• Try multi-region: Deploy Akka across clouds
to test seamless failover.

• Get a TCO estimate: Collaborate with Akka’s
team for a tailored cost model.

• Future-proof your architecture: Embrace
event-driven, eventually consistent design for
high availability at scale.

http://Akka.io

Table of Contents

The impact of downtime 1

Uptime is a mandate 2

Business resilience relies upon availability 3

Availability requires agility: safe and continuous change 3

The cost of adding nines 4

Achieving six nines for apps 5

Any nines with Akka 6

Akka lowers the cost of nines 11

Your Akka TCO is a fraction of the alternative 13

Learn more - start your journey of nines 14

Next steps 14

1

Architect’s Guide to 99.9999%
Application Availability

Business resilience has never been more important, and application resilience is
fundamental to it. A lack of application resilience often puts a halt to business and
operations. Downtime causes lost revenue, reputational damage, and regulatory
penalties. However, meeting six nines of availability (99.9999%) is challenging and
expensive for modern, mission-critical applications.

Traditional approaches demand costly, complex infrastructure changes; most
clouds only guarantee up to 99.99% uptime, leaving app owners responsible for
higher levels of resilience.

Akka apps incorporate additional nines of availability without triggering an
architecture rethink or order-of-magnitude cost increase.

The impact of downtime
Application downtime leads to revenue loss, customer dissatisfaction, brand damage, ops disruption,
regulatory consequences, increased diagnostic costs, and lower employee morale.

Availability Annual downtime

99.9999% 31.5 secs

99.999% 5.26 mins

99.99% 52.6 mins

99.9% 8.76 hours

Outages are costly. The Uptime Institute
surveyed IT leaders who indicated that 54% of
outages cost more than $100,000 and 16% cost
more than $1 million. Forrester found that the
average organization experiences 830 minutes
of annual downtime at a cost of $5.6M. After a
July 2024 update caused widespread outages,
Crowdstrike estimated a $60M revenue loss
from abandoned customers and took a $22
billion market cap hit that was impacted by
Delta Air Lines, who launched
a $500M lawsuit in response.

The business impact of downtime is more
nuanced than the precision of decimal points.
Consider how users react to:

• One 4-hour outage vs. 240 dispersed
one-minute outages

• Peak-hours outages vs. off-hours outages

The structure and impact of downtime are
baked into Service-Level Agreements (SLAs),
which quantify uptime and downtime along with
enumerating the financial remedies available
when a breach is observed.

https://uptimeinstitute.com/uptime_assets/2564c126499732e5fb721dd333bc7daade3c4f6dff9875b2763a3051578518bf-GA-2024-03-annual-outage-analysis-2024.pdf
https://uptimeinstitute.com/uptime_assets/2564c126499732e5fb721dd333bc7daade3c4f6dff9875b2763a3051578518bf-GA-2024-03-annual-outage-analysis-2024.pdf
https://www.ibm.com/downloads/documents/us-en/10a99803f5afd8c1
https://www.ibm.com/downloads/documents/us-en/10a99803f5afd8c1
https://www.reuters.com/legal/delta-sues-crowdstrike-over-software-update-that-prompted-mass-flight-2024-10-25/?utm_source=chatgpt.com
https://www.reuters.com/legal/delta-sues-crowdstrike-over-software-update-that-prompted-mass-flight-2024-10-25/?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Service-level_agreement

2

Architect’s Guide to 99.9999%
Application Availability

Uptime is a mandate
Availability is a mandate, appearing as controls or requirements in regulations, compliance initiatives,
security, and DevOps standards.

Regulation/standard Availability requirement

ISO 27001 Requires business continuity and disaster recovery to ensure high availability.

ISO 22301 Focuses on minimizing downtime and ensuring service continuity.

SOC 2 (Availability) Mandates measurable uptime and incident response for service reliability.

PCI DSS Ensures uninterrupted service for payment processing systems.

GDPR Requires availability of personal data and services under Articles 32 & 33.

HIPAA Demands contingency plans for data availability in healthcare systems.

CMMC Ensures system availability for defense-related contractors.

NIST SP 800-53 Requires resilience and continuous availability in federal systems.

SOX Indirectly requires availability for financial reporting in public companies.

FedRAMP Mandates specific availability SLAs for federal agencies.

FIPS Supports availability in compliant cryptographic systems.

CSA STAR Evaluates cloud provider reliability, including uptime.

SRE (Site Reliability) Uses SLOs and error budgets to maintain measurable availability.

ITIL Focuses on minimizing downtime via incident management processes.

CIS Controls Ensures system resilience and availability to mitigate cybersecurity risks.

FISMA Requires high availability for federal data and applications.

MAS TRM Mandates availability and resilience for financial services in Singapore.

APRA CPS 234 Requires availability for financial institutions in Australia.

Basel III/IV Banking regulations require uninterrupted service availability.

Uptime Institute Tiers Certifies data center performance and availability (e.g., Tier III/IV).

ANSI/TIA-942 Defines availability standards for telecom infrastructure.

DORA Metrics (MTTR) Measures time to recover from outages, critical for uptime.

DORA Metrics
(Change Failure)

Reduces downtime caused by failed deployments.

As an example, the EU’s Digital Operational
Resilience Act (DORA)—not to be confused
with Google’s DORA metrics for DevOps
velocity—sets strict requirements to ensure
the operational resilience of financial entities,
including banks, payment institutions,
investment firms, insurance companies, crypto-
asset providers, and SaaS providers that serve
financial institutions.

This includes downtime minimums, availability
SLA mandates, rapid recovery mechanism,
resilience testing, and infrastructure redundancy.
Failure to meet these requirements will cause
financial penalties, regulatory fines, legal liability,
termination of contracts or exclusion from the EU
market, or regulatory oversight intensification.

https://www.eiopa.europa.eu/digital-operational-resilience-act-dora_en
https://www.eiopa.europa.eu/digital-operational-resilience-act-dora_en
https://dora.dev/
https://dora.dev/

3

Architect’s Guide to 99.9999%
Application Availability

Business resilience relies
upon availability
Business resilience is the ability of an
organization to anticipate, prepare for,
respond to, and recover from disruptions
while maintaining continuous operations
and safeguarding key business functions.
It encompasses a combination of disaster
recovery, risk management, cybersecurity,
operational continuity, and adaptability to
changing conditions—ensuring that a company
can withstand shocks such as cyberattacks,
system failures, supply chain disruptions,
or market shifts without significant loss of
functionality or reputation.

In the context of software systems, business
resilience means designing architectures that
support high availability, rapid failover, and
minimal downtime while proactively mitigating
risks through redundancy, automation, and
disaster recovery planning. The goal is not just
to recover from failures but to ensure they have
minimal impact on users and business operations.

Achieving better business continuity and resilience
in SaaS systems requires a direct investment in
higher availability SLAs, as maintaining uptime
during failures demands robust disaster recovery
(DR) and resilience strategies.

When companies commit to stringent SLAs—
such as 99.99% availability or higher—they
must ensure that their systems can withstand
outages with minimal downtime and data loss.
This requires multi-region failover, automated
recovery mechanisms, and continuous data
replication to maintain real-time integrity –
automatic when you create Akka apps. Without
these measures, even brief service disruptions
can result in financial penalties, customer churn,
and reputational damage.

Availability requires agility:
safe and continuous change
A high availability SLA is not just a function of
system design—it is also a function of a software
team’s ability to operate, adapt, and respond.
If a dev team cannot rapidly diagnose, fix, and
improve an operational system, uptime and
resilience suffer. Organizations aiming for
99.99%+ availability must invest not only in
technology but also in team agility, automation,
and operational excellence to ensure that
availability is not just a goal but a sustained reality.

The availability of a software development
team is directly tied to its ability to rapidly
diagnose and resolve incidents, deploy fixes,
apply security patches, and adapt to operational
changes. Achieving high availability SLAs
requires not only responsive teams but also an
application and infrastructure that support
near-continuous improvements and rapid
rollbacks, like what Akka provides.

Without fast deployment pipelines, real-time
observability, and automated incident response,
even a highly skilled team can struggle to maintain
uptime. Additionally, reducing dependencies
on key individuals and eliminating bureaucratic
bottlenecks ensures that operational issues can
be addressed swiftly. Ultimately, maintaining high
availability is not just about system resilience—it’s
about enabling fast, safe, and continuous changes
to keep the software reliable and performant
under all conditions.

4

Architect’s Guide to 99.9999%
Application Availability

Availability Changes Dev cost Ops cost

99%
Orchestration, backup & recovery, observability,
DevOps processes

$ $

99.9%
Single-region cluster deployment, standby
environments, failover

$$$ $$

99.99%

Multi-region deployment, infrastructure
redundancy, continuous health checking, failover
automation, on-call operations, active-passive
regional clustering

$$$$ $$$$$

99.999%

Redundancy at every layer, active-active regional
clustering, decoupled event-driven architecture,
synthetic real-time transactions, rolling no-
downtime updates, DDoS resistance

$$$$$$$$$ $$$$$$$

99.9999%
Chaos engineering, latency-sensitive traffic
steering, continuous deployment

$$$$$$$$$ $$$$$$$$$$

The cost of adding nines
Adding additional nines forces an
uncomfortable conversation, as the economics
to ensure availability have typically been so
significant that many organizations avoid
prioritizing higher availability until they are
under a mandate or facing severe injury to their
business if they fail to act.

As SLAs become more demanding, the
complexity and cost of maintaining availability
grow exponentially. Moving from 99.9% to
99.999% uptime means reducing allowable
downtime from nearly nine hours per year to
just five minutes, which often necessitates
active-active architectures rather than simpler
failover models.

Historically, systems that want to “add a nine” face
an order of magnitude increase in engineering
effort and operational complexity. Each nine

usually includes fundamental architecture,
process, culture, and organizational changes.

Complexity and cost concerns affect
organizations of all sizes. Even hyperscalers
like AWS and GCP are challenged to achieve
six nines where resourcing is significant. Most
major cloud providers offer SLAs in the range of
99.9% to 99.99% for their services. This includes
AWS EC2, RDS, Elastic Load Balancers; Azure
VMs; and GCP Compute Engine and Kubernetes
Engine. These services underpin millions of other
global services, which usually pass along their
cloud SLA to their customers.

These low guarantees are why Gartner advises
clients to “focus on application resilience, not
infrastructure redundancy.” The onus is on
application owners to meet these requirements
which cannot be delegated to your cloud provider.

4

https://aws.amazon.com/legal/service-level-agreements/?aws-sla-cards.sort-by=item.additionalFields.serviceNameLower&aws-sla-cards.sort-order=asc&awsf.tech-category-filter=*all
https://www.gartner.com/document-reader/document/4281199?ref=solrAll&refval=448573029
https://www.gartner.com/document-reader/document/4281199?ref=solrAll&refval=448573029

5

Architect’s Guide to 99.9999%
Application Availability

Achieving six nines for apps

An application that does the following, can achieve 99.9999% availability:

• Serve reads and writes simultaneously in multiple locations

• Reliably replicate all of its data between those locations

• Converge in a timely fashion

• Enable seamless upgrade or failover to other regions

• Continue uninterrupted with new versions or in new regions

To achieve this, an application must have a design where data interdependencies do not restrict
system scalability, and that application must run on a resilient-from-within runtime, infrastructure,
and data fabric:

Multiple locations
The same application can handle requests in
multiple locations simultaneously. If any location
cannot service requests, other locations are
unimpeded and can continue to service requests.

This creates a form of application redundancy
that will enable the application to continue
operating when one or more locations fail as
long as all locations do not fail simultaneously.
Further, if each location operates within a
different cloud provider, then the risk of all-
locations failure becomes exceedingly unlikely.

Data replication
Each location must be able to service any
potential end-user request. With each region
handling all potential user requests, each region
must operate against the application’s entire
data set. This data set is managed locally and
updated with changes that occur from the same
app in other locations. Each location has its own
copy of the application’s data and a reliable,
transparent, continuous system for replicating
data between locations.

Local strong consistency with distributed
eventual consistency
Each location must be able to operate
independently of other locations. This requires
all local data transactions to be strongly
consistent. Replication is a non-zero cost and
time (it takes light 45ms to travel across the
United States), which means a transaction that
is committed locally is not guaranteed to have
completed its replication event before a location
failure occurs.

Some systems block the completion of the
local transaction until the replication event
has been confirmed by all receiving regions,
effectively crippling the system’s performance
and making it unable to scale concurrent users
deterministically.

Instead, cross-location data must always be
guaranteed to converge deterministically and
correctly when being replicated to another
location. This must occur while recognizing
that unexpected network issues or location
failures could cause the replication actions to
occur significantly later. The same application
running in different locations must assume and
understand that the data it is locally working
with may not be the latest.

6

Architect’s Guide to 99.9999%
Application Availability

Data convergence
Data within one location must merge with its
data counterparts in another location. Any
data transaction that occurs in a local region is
strongly consistent, and its record is a fact. That
change is then replicated to other locations.

By definition, any replicated data that a new
location receives occurred in the past. It is
history and may not reflect the present state
as the data could have further changed in the
originating location. The replicated data must
be incorporated quickly and consistently into
the local version of the data.

This merge is data convergence, which is
taking data changes that happened in the
past and correctly integrating them into the
local understanding of the data so that the
originating location and replicated location
create the same data interpretation. As a result,
future actions will yield the same results.

If the convergence backlog overwhelms a
location, it is on a path to failure. Convergence
failure from overload would have its traffic
rerouted to another location, increasing its
load and potentially leading to cascading
failures of each region. In practice, this is rare
as performance tends to flatten out as a system
scales rather than fail.

Interesting side note: convergence with read-
or-write replicas based upon Conflict-free
Replicated Data Types (CRDTs) is fast and
efficient, with data guaranteed to merge as it
is a monotonic set. This compares to historical
practices, which typically implement a crude
Last Write Wins (LWW) merge function
that causes unintended data overrides.
Convergence in systems without CRDTs either
requires end users to resolve merge conflicts
(slow) or to algorithmically make a win/loss
decision (e.g., LW, W), which makes you take
responsibility for the science behind distributed
transactions (i.e., slow, error prone, and layers
of compensation).

Intelligent clients and routing
The loss of a single location will not affect your
uptime, but the client accessing this service
must have a mechanism to route its traffic to
an available location. This is a largely solved
problem in distributed systems, as clients can
have multiple locations with automated failover
incorporated, a system can deploy global
hostnames that map multiple IP addresses to
a single domain, or an Anycast IP address can
be used which leverages IP and BGP routing to
send different requests to different locations
based upon latency, location or failure.

Any nines with Akka
Many Akka customers can achieve (and have
achieved) 99.9999% availability, the equivalent
of an always-on system. With this level of
availability, you can operate 24/7, while ops rest
easy with a system that has built-in redundancies
and automation for failure recovery.

Akka takes an approach to application design
and system operations that can enable your
services to exceed six nines availability. We

simplify the development required to have an
application that is six nines-ready with an SDK
that ensures applications are deployable across
many regions while also significantly lowering
the cost of operating apps across many regions.

With Akka, you build and operate multi-region/
multi-cloud replicated applications that are
elastic, agile, and resilient:

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://akka.io/blog/multi-region-replicated-apps
https://akka.io/blog/multi-region-replicated-apps
https://akka.io/how-akka-works

7

Architect’s Guide to 99.9999%
Application Availability

Multiple regions
An application built with Akka can operate
simultaneously across multiple regions. Our
serverless offering at Akka.io provides five
global regions. Customers can also set up
private regions with an Akka Bring Your Own
Cloud (BYOC) deployment. Akka regions are
multi-cloud, allowing them to operate across
and within different hyperscalers and data
centers. The global regions hosted at Akka.io
span GCP, Azure, and AWS.

multi-cloud deploy

multi-cloud replicated

Your Akka app

Dev

Logic Data

App

GCP

App

AWS

App

Azure

Redundant infrastructure
Each region duplicates the Akka-managed
infrastructure, creating redundancy
through duplication. Akka applications take
responsibility for their own outcomes by
managing their underlying infrastructure (i.e.,
resource allocation, failover, resilience) to ensure
they achieve a local SLA (i.e., latency, uptime,

concurrent requests) that is deemed responsive
under any type of external factor. The local
infrastructure is itself replicated, duplicated,
and clustered where appropriate.

The combination of redundant local
infrastructure and regionally replicated
infrastructure builds in multiple layers of
redundancy. While this level of redundancy can
multiply costs, Akka efficiently only consumes
the physical compute needed to address the
volume of requests it services. This optimization
from within, combined with standby regions
and replication filters, dramatically lowers total
system costs to a level that is not much larger
than single region scale-out systems!

App data replication
Akka applications act as their own in-memory,
durable database. The application you create
becomes its own in-memory system of record
for its data. Changes to the application’s data are
automatically captured as events and persisted
within a local storage engine. If you have deployed
the same application into multiple regions, then
all your application’s data is transparently, reliably,
and continuously replicated to all the regions that
your application is running within.

Connectivity between regions and encryption
of your application’s data are handled by an Akka
runtime environment that coordinates cross-
region ingress and egress. Data replication has
an only-once guarantee coordinated by an
embedded brokerless messaging engine that
operates over gRPC.

Event log Event log
Replication
over gRPC

Event
store

Event
store

Region 1 Region 2

1 2 3 1 2 3

App
State

1,2,3

App
State

1,2,3

7

https://akka.io/why-akka
https://akka.io/why-akka
https://content.akka.io/hubfs/collateral/technical-documents/akka-byoc.pdf
https://content.akka.io/hubfs/collateral/technical-documents/akka-byoc.pdf
https://akka.io/customer-stories/verizon-wireless-deploys-akka-doubles-business-performance-results
https://akka.io/customer-stories/verizon-wireless-deploys-akka-doubles-business-performance-results
https://akka.io/how-akka-works
https://akka.io/how-akka-works
https://doc.akka.io/java/event-sourced-entities.html
https://doc.akka.io/java/event-sourced-entities.html

8

Architect’s Guide to 99.9999%
Application Availability

Replication filters
 For compliance purposes, such as with GDPR
and PII, certain data must be contained within a
geographic boundary, preventing it from being
replicated to regions outside the regulatory zone.
Additionally, as the amount of generated data and
regions increases, the amount of replicated data
multiplies, leading to cascading failures.

App designers and operators require fine-
grained control over the placement of data and
how it’s copied across topologies to comply with
data sovereignty and privacy regulations. Akka
provides replication filters to control what data
is replicated and where it may be replicated. This
applies to coarse-grained data (e.g., all User data
to all regions) and to fine-grained data (e.g., a
‘Bob’ instance of an entity replicates across APAC
and NA but not EMEA).

Logic

Data

Your Akka app

UsersUsers

Logic

Data
Shard | Stream | Replicate

CRDT convergence
Akka leverages embedded CRDTs to merge
state changes from the same data instance that
is replicated across regions. CRDTs are fast,
efficient, and guarantee that merge ordering
is consistent. You will always converge. Akka
supports single-writer entities where only one
instance in one region is modifiable with all
other replicated instances as read replicas.

Akka also supports multi-writer entities (Multi-
Master Replication) where the same data
instance can be written to simultaneously in two
different regions. Developers can implement
a merge function that programmatically
instructs the CRDTs how to merge data that
was modified by two parties at the same time,
similar to how multiple editors work within
Google Docs.

Eventually consistent
Akka applications anticipate and expect data to
be eventually consistent. While local operations
against your application’s data are strongly
consistent, that consistency is not provided
to other regions as it would create a ceiling on
scalability and availability.

Strongly consistent cross-region transactions
would cause local write latency to explode
from less than 10ms to well over 300ms (the
human eye can detect visual cues >13ms). This
limitation is why systems built upon distributed
transactions and Raft/Paxos consensus hit
upper scale limitations and reduce availability as all
parties are strongly coupled.

Akka applications are, by design, able to work
with eventually consistent data, unencumbered
by whether the changed data it’s receiving was
modified seconds or even days ago. When an
application is eventually consistent by design,
you can lose entire regions for extended periods,
and the application will be able to seamlessly
incorporate all data changes made before, during,
and after the region failure.

Load shedding
Akka apps cluster themselves from within
to provide elasticity and redundancy to
deterministically execute actions no matter
what demand is placed upon the application.
Akka embeds many techniques to shed load in
order to handle failures or avoid overwhelming
the system.

This includes backpressure to slow upstream
systems with overflow strategies, circuit
breakers to reject requests from failing
systems, throttling to limit processing rates
on custom logic, dynamically balancing load
across clustered nodes, supervision to restart
or stop overwhelmed service instances,
adaptive control for rebalancing data and load
as compute alters, and data passivation on
infrequently accessed objects to free memory.

https://doc.akka.io/libraries/akka-edge/current/overview.html#dynamic-filters
https://doc.akka.io/concepts/state-model.html#_state_models_and_replication
https://doc.akka.io/concepts/state-model.html#_state_models_and_replication
https://doc.akka.io/java/event-sourced-entities.html#_replication
https://akka.io/akka-performance-benchmark/demo-benchmark-post
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
https://doc.akka.io/libraries/akka-core/current/stream/stream-flows-and-basics.html
https://doc.akka.io/libraries/akka-core/current/common/circuitbreaker.html
https://doc.akka.io/libraries/akka-core/current/common/circuitbreaker.html
https://doc.akka.io/libraries/akka-core/current/stream/operators/Source-or-Flow/throttle.html
https://doc.akka.io/libraries/akka-core/current/general/supervision.html
https://doc.akka.io/libraries/akka-core/current/general/supervision.html

9

Architect’s Guide to 99.9999%
Application Availability

Multi-region deployment
Akka applications are developed, built, tested,
and packaged offline. When ready, applications
can be deployed once, with Akka ensuring that
your application’s assets are made available
within all regions.

Akka coordinates the service activation in each
region, creating region-specific routes for APIs
and endpoints. Akka applications are made
available within a registry, which could be globally
served or embedded within each region.

Secrets, keys, and certificates are centrally
managed and pushed into each region with
regular rotation for certificates and secrets in
control of sensitive data.

Rolling no-downtime regional updates
Many stateful systems block end-user traffic
during an upgrade or migration cycle. Akka apps
perform no-downtime rolling upgrades within a
single region. Application instances are elastic,
enabling new versions to form new clusters
to serve existing end-user traffic while old
instances are slowly discontinued.

With all state changes and communications
transported as decoupled events, new
application versions or data schema changes are
automatically interoperable with older versions.
With Akka, you can execute new version updates
in all regions simultaneously or within a single
region to create regional blue-green upgrades.

Global observability
Akka collects logs, metrics, and traces for
running applications within each region and
merges them into a central observability view
for each application, service, and component.
Operations can evaluate per-region SLOs such
as availability, latency, errors, and events while
also measuring a global availability SLA to
quantify system availability. Observability data
for each region can be exported to third-party
observability solutions.

Your code

domain {
data : key-value
d2 : string
d3 : custom

}

commands {
insert()
update()
delete()

}

event_handlers {
on_change()

}

Akka cluster

Network event log

Persistence

that run
within

automatically
inherits

Auto scaling

Patterns Akka environments

Akka app

Load balancing

Retries

Bulkheads

Retry backoffs

Bulkheads

Retry backoffs

Services

End users

Endpoint

API gateway

EndpointEndpoint

Shard

Instance

E
Shard

Instance

E
Shard

Instance

E

https://akka.io/what-is-akka
https://akka.io/what-is-akka
https://akka.io/what-is-akka#:~:text=Automated%20operations
https://doc.akka.io/operations/observability-and-monitoring/index.html

10

Architect’s Guide to 99.9999%
Application Availability

Global hostnames
The same application running in two regions
will expose its endpoints within each region,
creating multiple routes for end users to access
the application. Each service within each region
will have a region-specific hostname and IP
address, pushing responsibility out to clients to
detect available regions and to select the optimal
location for their requirements, whether they are
latency, geo-location, or functionally driven.

Akka provides access to global and custom
hostnames. Global hostnames (i.e., random-
host-id.akka.service) are Akka-specific
hostnames generated for a single app as a
single entry point to all regions. Global clients
can reference this singular hostname and

access all regions, deferring the selection of
the region to the behavior of how Akka registers
within different DNS name servers.

Custom hostnames (i.e., service.mycompany.
com) are owned and controlled by our customers
who register all of the Akka regions servicing the
domain with our customer’s DNS name server
providing routing and selection logic.

DDoS resistance
You can deploy as many Akka regions as you
want, operating within different cloud providers
or private data centers under your control.
Regions can be directly exposed as routes or
as a shadow region where it receives replicated
data with endpoints whose routes are not
Internet-accessible.

11

Architect’s Guide to 99.9999%
Application Availability

Operating across hyperscalers incorporates
the security best practices of multiple cyber
defense clouds, which route traffic across
multiple data centers, drop malicious traffic
at their network edge, and leverage machine
learning to adapt to the attack. Shadow regions
are hot standbys that can be activated as an
active region with routes unknown to attackers.

Additionally, the use of global hostnames and
custom hostnames creates security through
obscurity, creating a layer of abstraction that
poses challenges for attackers to discover and
locate the full list of regions that serve
an application.

Trust before profit
One risk to any multi-region system is a failure
of trust from third-party services, underlying
infrastructure, or black-box managed services.
This failure could result from systemic errors
introduced into an underlying platform or from
unintentional and malicious human error.

The xz utility backdoor was terrifying and
exposed the risks underpinning the global
software supply chain.

Akka’s commitment to security and
compliance is paramount, leading to attestation
or certification of 19 compliance standards and a

 plan to implement an additional 1,000 controls
throughout 2025.

Resilience guarantee
Akka apps have been trusted by F500 and
startup disruptors for 15 years. Based upon the
Reactive Manifesto and Principles, Akka apps
are resilient by design, enabling them to recover
an application’s state from any hardware or
network failure, regardless of the length of the
disruption.

Akka is backed by decades of research. Akka’s
track record of stability is unmatched, with
Akka never experiencing a Sev1 outage that
led to data loss in 15 years. We embrace this
confidence and extend these protections to
our customers with legal and financial
protections: Akka indemnifies against losses
caused by an Akka App becoming unreliable.

Akka lowers the cost of nines
Akka changes the economics of adding nines:

Development
Apps built with Akka are nine-nines ready and
deployed independently of your operating
goals. Akka has a simple SDK with six easy-to-
learn components that enable the full spectrum
of enterprise systems.

If an Akka app builds, runs, and passes tests
with our offline test kit, it will be consistent
when deployed into an operating environment.

Akka apps can operate within a single region
or many regions simultaneously. The offline
development model, coupled with Akka’s rolling
no-downtime updates, creates the potential
for tremendous velocity improvements as
application changes can be made quickly and
nearly instantly observable in a multi-region
production environment.

https://en.wikipedia.org/wiki/XZ_Utils_backdoor
https://trust.akka.io/
https://trust.akka.io/
https://www.reactivemanifesto.org/
https://www.reactiveprinciples.org/
https://content.akka.io/guide/principles-and-patterns-for-distributed-application-architecture
https://trust.akka.io/resources?s=zrmwpoiur4b2lho08doc8y&name=resilience-guarantee-policy
https://akka.io/what-is-akka#akka-components
https://akka.io/what-is-akka#akka-components

12

Architect’s Guide to 99.9999%
Application Availability

Availability Akka’s economics Dev cost Ops cost

99%
Akka single node, single region, and serverless deployments are
elastic, agile, and resilient to millions of TPS.

$ $

99.9%
Akka apps can be simultaneously deployed in one or more regions,
with all the application’s data replicated between them.

$ $$

99.99%

Akka apps are decoupled, event-driven services. Traffic
shedding and failover automation are contained within. All
clusters are active-active. Ops integrates with their observability
and SIEM tools for monitoring, metrics, traces, and logs.

$ $$$

99.999%

New regions can be added in hours in self-hosted environments
or in different cloud providers. Upgrades and new application
versions are rolling no-downtime updates. DDoS resistance
through regional obscurity, traffic shaping and steering, and
global hostnames.

$ $$$

99.9999%
Akka apps expect failure and are guaranteed to recover from any
hardware or network disruption. GitOps-ready systems enable
multi-region chaos engineering and continuous deployment.

$$ $$$$

12

Operations
Akka apps manage their own infrastructure
to consume only the resources required to
achieve their SLA. New regions with redundant
infrastructure can be operated for less than
$2K / month.

Akka applications can replicate across all or
a select set of the regions you provision to
optimize the allocated infrastructure spend.
New regions can be added in hours - whether
in the same cloud or different clouds - and
existing Akka applications can replicate into (or
migrate) into the new region.

When combined with replication filters and
data archiving, you can add many more nines
of availability with less-than-duplicative
infrastructure increases for each new region.
Further, because regions can operate in
different cloud providers and Akka apps can
migrate between regions, your operations
teams gain bargaining power with your cloud
provider during your annual spend commit
discussions by having applications freed from
cloud lock-in.

13

Architect’s Guide to 99.9999%
Application Availability

Single-region requests / hour 1,000,000

Single-region expected avg. TPS 278 TPS

Three-region expected avg. TPS 833 TPS

Single-region spiked TPS capacity 2,000 TPS

p(99) end-user read latency 8ms

p(99) end-user write latency 14ms

Data cached in-memory to lower latency 96 GB

Stateful data generated / hour 1.5 GB

What % of data replicated to other regions? 100%

13

Your Akka TCO is a fraction of the alternative
For ~ USD 300,000 / year, you can operate an
application that exceeds 99.9999% availability
while sustaining more than 1000 Transactions
per Second (TPS), a rate of activity more than
what is required by 99.9% of APIs. This amount
includes the subscription paid to Akka and the
infrastructure needed!

With Akka 3, you can build and run your
applications across multiple regions. Akka
provides three types of operating environments: a
Serverless environment, where Akka provides the

infrastructure; a Bring Your Own Cloud (BYOC)
environment, where Akka remotely manages
a private region in your cloud VPC; and a Self-
Hosted environment, where you provide the
infrastructure and management oversight.

Consider a high-traffic service that
needs 99.9999% availability across three
regions. When considering the total cost of
ownership, the single-region infrastructure
required is determined by the application’s
required performance.

This application profile determines the infrastructure required to deliver the targeted performance:

• Higher total aggregate TPS requires more app instances.
• Higher TPS spikes require a bigger persistence store.
• Higher generated data requires more egress and storage.

With this configuration, the total cost to license Akka and purchase the cloud infrastructure required
to deliver the app would be:

Akka TCO - 1K Sustained TPS - BYOC

1 Region cost 3 Region cost

Paid to Akka $5K $15K

Paid to your cloud provider: orchestration, registry,
observability, proxies, storage, egress

$3.3K $10K

Monthly TCO $8.3K $25K

This configuration has the capacity to deliver 2500 TPS for your Akka app, much higher than the
targeted 1K sustained configuration. And, the price can be lowered as replication filters reduce
egress and storage costs.

14

Architect’s Guide to 99.9999%
Application Availability

Most customers choose a BYOC deployment,
which gives them data sovereignty and cloud
account control. In a BYOC scenario, customers
pay for the infrastructure consumed, apart from
the licensing for Akka’s operating environments,
which manage the Akka app and infrastructure.
Akka’s fees are consumption-based and tied to
the consumption of your services. Services with
lower traffic will be charged less than those with
higher traffic.

What’s wild is to compare Akka’s TCO against
the licensing fees of replicated databases.

Not only must you purchase the redundant
infrastructure, the subscription fees for replicating
a transactional SQL database will often be 3-5x
more than the TCO of an Akka application.

The distributed SQL vendors that you may
consider will not manage nor operate the
application and certainly won’t offer a resilience
guarantee for the application itself. Only when
you let the application act as its own in-memory,
durable database can you observe a higher
resilience guarantee, higher system SLA, and
lower costs due to its efficient execution model.

Akka has made more than 100,000 systems
elastic, agile, and resilient. Akka is downloaded
13M times monthly, and every day, more than
two billion people touch an app that is powered
by Akka.

Many of Akka’s customers have strived and
achieved many nines of availability:

1. CERN: “Akka makes NXCALS data
acquisition extremely resilient to failure.
Akka’s self-healing capabilities fully
recreates itself without loss of data during
broader infrastructure maintenance.

2. Norwegian Cruise Lines: “In 12 months
with Akka, NCL completed over 65
code deployments with no major issues
or rollbacks.”

3. Icon Solutions: “Akka handles failures and
restarts, ensuring that the system can
recover immediately, remain stable, and
is always available.”

4. Judopay: “A payments system must
offer 100% certainty, and the self-healing
capabilities of Akka give us exactly what
we need.”

Talk it through

Contact us to discuss your unique requirements
with our solution architects and engineers. We
will - without any pressure - create a tailored,
detailed TCO estimate of what it costs to
build and operate a multi-region app with any
performance profile.

Try it out

With Akka, your team can build and deploy your
own multi-region replicated app in minutes.
Follow the 5-minute tutorial for new accounts
at Akka.io to deploy, run, and test an application
that runs across three regions, each in a
different cloud provider.

14

Learn more - start your journey of nines

Next steps

https://home.cern/
https://akka.io/customer-stories/akka-helps-keep-groundbreaking-physics-experiments-running-smoothly
https://akka.io/customer-stories/akka-helps-keep-groundbreaking-physics-experiments-running-smoothly
https://www.ncl.com/
https://akka.io/customer-stories/norwegian-cruises-to-record-profits-with-reactive
https://akka.io/customer-stories/norwegian-cruises-to-record-profits-with-reactive
https://iconsolutions.com/
https://akka.io/customer-stories/icon-solutions-leverages-akka-to-deliver-cloud-native-payment-solutions
https://akka.io/customer-stories/icon-solutions-leverages-akka-to-deliver-cloud-native-payment-solutions
https://www.judopay.com/
https://akka.io/customer-stories/judopay-builds-efficient-dependable-agile-payments-solutions-on-a-reactive-architecture
https://akka.io/customer-stories/judopay-builds-efficient-dependable-agile-payments-solutions-on-a-reactive-architecture
https://akka.io/contact-us
https://console.akka.io/register?_gl=1*1j4soln*_gcl_au*MTQxNTQyMTI3OS4xNzMyNTU0NDkz
https://console.akka.io/register?_gl=1*1j4soln*_gcl_au*MTQxNTQyMTI3OS4xNzMyNTU0NDkz

©2024 Akka Inc. All rights reserved.

